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DAMPING OF STRUCTURAL COMPOSITES
WITH VISCOELASTIC SHEAR-DAMPING MECHANISMS

By Jerome E. Ruzicka, Thomas F, Derby,
Dale W, Schubert and Jerome S, Pepi

ABSTRACT

An investigation is conducted to evaluate the so~called geometrical
parameter of structural composites with viscoelastic shear-damping
mechanisms, Design equations and graphs are developed for the geometrical
parameter of a wide range of viscoelastic shear-damped structural composite
designs. Using existing theory, manual and automated procedures are
developed for the prediction of the structure loss factor of structural composites
comprised of two elastic elements separated by a thin viscoelastic damping
layer. Laboratory experiments are performed to verify the basic theory and
design procedures developed. A comparison of theoretical predictions and
experimental measurements of the structure loss factor is made for two-
elastic-element structural composites fabricated from various combinations

of structural materials including aluminum, steel and fibre-glass.
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DAMPING OF STRUCTURAL COMPOSITES
WITH VISCOELASTIC SHEAR-DAMPING MECHANISMS

By Jerome E. Ruzicka, Thomas F. Derby,
Dale W. Schubert and Jerome S, Pepi

Barry Controls
Division of Barry Wright Corporation
Watertown, Massachusetts

SUMMARY

An investigation of parameters important in the design of structural
composites with viscoelastic shear-damping mechanisms has been conducted.
Design equations and graphs are developed for the so-called geometrical
parameter of a wide range of viscoelastic shear-damped structural
composites, which include: laminated beams and plates {comprised of solid
and/or honeycomb structural sheets), box-beam constructions, bars of various
cross-sections, square and circular tubes, structural shape beams including
angle, channel, T- and I-sections, and a dumbbell model (which frequently
provides a simplified representation of a more complex structural assembly).

Using existing theory, manual and automated design procedures for the
prediction of structure loss factor are developed for viscoelastic shear-damped
structural composites comprised of two elastic elements separated by a thin
viscoelastic damping layer, The design procedures which apply for any cross-
section geometry and arbitrary structural and viscoelastic material properties,
are used to predict the damping characteristics of a wide range of two-elastic-
element structural composite beams employed in an experimental verification
program, As a design example, the details of the numerical calculations for a
typical structural composite beam are presented,

Laboratory experiments have been performed to verify the theoretical
predictions and to provide insight into practical design considerations, A
comparison of theoretical predictions and experimental measurements of the
structure loss factor is made for two-elastic-element structural composites
fabricated from various combinations of structural materials including
aluminum, steel and fibre~glass, Structural specimens include laminated
beams comprised of solid sheets, solid and honeycomb sheets, honeycomb
sheets, and structural channels. A total of 118 loss factor measurements
were made for various free-free bending modes of 27 different beam specimens,
A statistical analysis of this data compared to the theoretical values of loss
factor indicated that the difference had a mean value of 0,6 per cent and a
standard deviation of approximately 30 per cent. Consequently, it is concluded
that the existing theory and the procedures developed for the prediction of the
loss factor of two-elastic element viscoelastic shear-damped structural
composites is satisfactory within accepted engineering accuracy.




SECTION 1: INTRODUCTION

The damping properties of structural fabrications can be considerably
enhanced by the incorporation of viscoelastic shear-damping mechanisms in
structural members and joints [Ref. 1]. Special design configurations incor-
porating distributed viscoelastic shear-damping mechanisms have been devised
which consist of a combination of elastic beam or plate elements separated
by layers of a viscoelastic damping material [Ref. 2-8]. The elastic
elements are made from common structural materials and the damping
materials are generally polymers exhibiting high loss factors and relatively
low values of stiffness, When structural composites with constrained visco-
elastic layers undergo flexural vibrations, the layers of viscoelastic damping
material are subjected to cyclic shear strains, which cause energy of mechan-
ical motion to be converted into thermal energy. Because of this energy
conversion process, viscoelastic shear-damped structural composites are
capable of exhibiting extremely high degrees of damping.

Techniques for fabricating structural composites with viscoelastic
shear-damping mechanisms include the use of adhesively bonded intermediate
damping layers and self-bonding adhesive damping layers [ Ref. 2], The
structural coinposites with adhesively bonded damping layers offer the
advantage of being able to provide any thickness of viscoelastic damping
material in the structural composite, since the damping layer can be produced
in sheet form to the desired thickness prior to bonding between the elastic
structural elements. The thickness of the self-bonding adhesive visco-
elastic damping layer is limited; however, its use offers an advantage with
regard to the relative simplicity of production and workability of the composite
structure,

Early investigations of distributed viscoelastic shear-damping mech-
anisms were concerned with the damping effectiveness of a viscoelastic
damping layer constrained between two structural sheets, where one sheet
was very thin relative to the other [Ref. 3]. This damped structural configura-
tion was intended to represent the application of a damping tape (consisting of

a thin metal foil with adhesive backing) to @ structural beam requiring
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additional damping. An evaluation was also made of the damping performance
obtained by the application of a multiplicity of damping tapes to a structural
beam [Ref. 4].

It was found that multiple damping tapes offered no significant
improvement in damping at high frequencies (greater than 1000Hz), but
provided a substantial increase in damping for lower frequencies, Furthermore,
the damping provided by multiple damping tapes was essentially equal to that
of a single damping tape having a foil thickness which equals the sum of the
foil thicknesses of the multiple damping tape treatment and a viscoelastic
damping layer thickness equal to that of only one of the multiple damping
tapes. The same maximum degree of damping was obtained whether the
damping tapes were applied to one or both sides of the structural beam being
damped; however, the frequency at which the maximum damping occurred
differed for these two cases. These analyses applied for the case where the
total foil thickness is considerably less than the structural beam thickness,
Experiments indicated that the measured and theoretically predicted damping
were in reasonably good agreement, with values of the structure loss factor
being generally less than 0, 05 for practical damping tape treatments,

An analysis was subsequently performed to predict the damping
properties of structural composites incorporating distributed viscoelastic
shear-damping mechanisms for the case where the structural composites
consisted of two elastic elements of arbitrary material and size with an
intervening viscoelastic damping layer [Ref. 5, 6]. For geometrical configura~
tions incorporating a thin layer of viscoelastic damping material that is soft
compared to the stiffness of structural materials employed in the structural
composite, the structure loss factor 7 may be expressed in terms of three

parameters, as follows:

n=n(8, X, Y) (1)

where B is the loss factor of the viscoelastic shear-damping material, X is
defined as the shear parameter, and Y is defined as the geometrical

parameter,




The damping material loss factor B is the ratio of the imaginary and

real components of the complex shear modulus G*=Gg'+ jG” as follows:

B= G/G’ )

where G’ and G’ are the loss modulus and storage modulus of the visco-
elastic material, respectively. The shear parameter X depends on the
storage modulus and amount of viscoelastic material employed, the weight
loading on the structural member, the flexural rigidity, the geometry of the
cross-section, and the frequency of vibration. The geometrical parameter Y,
which is a function only of the geometry of the cross-section and the modulus
of elasticity of the elastic elements comprising the structural composite, may

be expressed mathematically as follows [Ref. 5,7, 81:

(D),

Y=E-I)T—l (3)

where (EI), is the flexural rigidity of the structural composite when its
elastic members are uncoupled and (EI)_ is the flexural rigidity of the
structural composite when its elastic members are completely coupled.
Theoretical and experimental evidence indicates that high values of the
geometrical parameter are required for a structural composite to exhibit a high
degree of damping. Based on (1) the theory of viscoelastically damped beams
with two elastic elements [Ref. 5], (2) the application of a lumped parameter
model as a simplified representation of a viscoelastic shear-damped structural
composite [ Ref. 7], and (3) experimental data acquired on various structural
composites [Ref. 8], it is concluded that the geometrical parameter Y is a
fundamental design parameter which plays a significant role in the performance
of all structural composite designs which incorporate viscoelastic shear-
damping mechanisms. Consequently even if the equivalent of the shear
parameter X is not defined for a more complex structural composite, the value
of the geometrical parameter in itself provides a guide for arriving at a
suitable design, especially when this information is coupled with previous
practical experience of designing and evaluating viscoelastic shear-damped

structural composites.
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In general, the problem of designing structural composites with visco-
elastic shear-damping meéhanisms involves the selection of a viscoelastic
damping material having a high loss factor B8 and arranging the cross-section
geometry of the elastic elements to produce a high value of the geometrical
parameter Y. Maximization of damping at a specified frequency or
temperature, however, will require the optimization of the shear parameter X
for two-elastic-element structural composites or an equivalent parameter for
more complex structural composite designs. Alternately, subsequent to the
selection of a viscoelastic damping material having a high value of loss
factor B and the determination of the geometrical parameter Y, a trial and
error procedure can be employed to arrive at a damping material thickness
which provides the degree of damping required in the frequency and tempera-
ture ranges of interest. Naturally, other design considerations such as static
stiffness, weight, stress, structure resonant frequency, and size, enter into
the design process and must be evaluated with structural damping as joint
design criteria. For most practical structural designs, it is generally
desirable for the geometrical parameter Y to have a value between 0.5
and 5.

The present investigation is concerned with the development of data
useful in the design of viscoelastic shear-damped structural composites and
the experimental verification of theoretical predictions of structure loss
factor. Specifically, the investigation encompasses the following studies:

(1) Mathematical analysis of tne geometrical parameter Y for a

wide range of viscoelastic shear-damped structural composite

designs.

(2) Development of simplified procedures for predicting the loss
factor of viscoelastic shear-damped structural composites

comprised of two elastic elements.

(3) Performance of laboratory experiments on two-elastic-element
viscoelastic shear-damped beams to evaluate the adequacy of
the existing theory and design procedures developed,

These three studies are discussed, respectively, in the following sections
of this report. Particular emphasis has been placed on design configurations



which have potential application in air-borne and aerospace structural
assemblies. Furthermore, analyses and experiments have been limited to
structural composite designs which incorporate thin layers of relatively soft
viscoelastic damping material; consequently, the results of the studies are
particularly applicable to structural composites which incorporate self-

bonding adhesive damping lavers as a distributed shear-damping mechanism.



SECTION 2: ANALYSIS AND DESIGN DATA FOR GEOMETRICAL PARAMETER

This section of the report presents various mathematical methods by
which the geometrical parameter of viscoelastic shear-damped structural
composites may be analyzed. These analyses are employed to develop
design equations and graphs for the geometrical parameter of a wide variety
of structural composite designs including: laminated beams and plates
(comprised of solid and/or honeycomb structural sheets), box-beam
constructions, bars of various cross-sections, square and circular tubes,
structural shape beams (angle, channel, T- and I-sections), and a dumbbell
model. Cross-sections of these structural composite designs are presented
in Figures 2.1 to 2. 8. In evaluating the geometrical parameter of these
structural composite designs, the viscoelastic damping layer thickness
and the number, modulus, and size of elastic elements are kept arbitrary
whenever possible. In some cases, however, it is necessary to impose

some restrictions to allow the development of useful graphical design data.

Cross-sections of damped structural plates are presented in
Figures 2.1 to 2.4. The plate designs shown in Figure 2.1 consist of
laminated solid sheets, whereas the designs shown in Figures 2,2 and 2.3
consist of honeycomb sheets constrained by solid sheets, and laminated
honeycomb sheets, respectively. The plate designs shown in Figure 2,4
consist of box-beam or I-beam constructions constrained symmetrically by

solid sheets.

Cross-sections of damped structural bars are presented in Figure 2.5.
The designs may be employed to produce square and round cross-section
bars, as well as bars having cross~sections intermediate to these shapes.
Cross-sections of damped tubes, both square and round, are presented in
Figure 2., 6.

Cross-sections of damped structural shape beams are presented in
Figures 2.7 and 2.8. Shown in Figure 2.7 are designs for damped angle,
channel, and T- and I-sections. The dumbbell model shown in Figure 2.8

may be employed as a simple representation of more complex structural



assemblies and is frequently useful in obtaining a first-order approximation
of the mechanical characteristics of structural members such as box-beam
and truss constructions.

Cross-sections of other viscoelastic shear-damped structural
composites, which are of @ more complicated nature, are presented in
Figures 2.9 and 2.10. Figure 2.9 shows structural beams of multilaminate
construction; Figure 2. 10 shows structural beams of celli-insert construc-
tion [Ref. 7]. Since these structural configurations involve too many
parameters to develop specific design data, more generalized equations for

the geometrical parameter must be employed for design purposes.
Geometrical Parameter Analyses

The fundamental equation for the geometrical parameter stated by
Equation (3) can be written in the following equivalent form:
ED (EDt

Y= &, 1T @, @)

where (EI)o and (EI)_ represent the uncoupled and coupled flexural
rigidities, respectively, and (}31)t = (EI) - (EI)o is the transfer flexural
rigidity for the composite structure.

The uncoupled condition corresponds to that wherein the elastic
elements of the structural composite experience the same flexural deformations
but act independent of each other with regard to their resistance to bending.
Consequently, for the case where the viscoelastic shear~-damping material
is soft compared to the stiffness of the elastic elements used in the struc-
tural composite, the uncoupled flexural rigidity (EI), represents the "static”
flexural rigidity (corresponding to the flexural stiffness exhibited for static
loading), which is equal to the sum of the flexural rigidities of each elastic
element about its own neutral axis. The coupled condition corresponds to
that wherein the elastic and viscoelastic elements experience the same flex-
ural deformations and act as a single unit with regard to resistance to bending.
The coupled flexural rigidity (EI)OO , therefore, corresponds to the sum of the
flexural rigidities of each elastic element about the composite neutral axis.



The relationships for geometrical parameter expressed by Equation (4)
can be applied to calculate the geometrical parameter of any continuous
composite structure by determining the location of the neutral axes and the
flexural rigidities applicable for the uncoupled and coupled conditions., The
neutral axes for the uncoupled condition are those axes passing through the
center of the area elements comprising the structural composite. The
composite neutral axis for the coupled condition is defined as that axis about
which the total moment of the extensional stiffnesses EA is zero. Defining §
as the distance between the composite neutral axis and an arbitrary reference
axis, the location of the composite neutral axis is specified by

. ZERS
® = ZEp, )
where bi is the distance from the center of area Ai to the reference axis.

Certain simplifications can be made when restrictions are placed
on the geometry of the structural composite; three specific geometrical
configurations in this category which are of considerable practical importance
are structural composites consisting of two elastic elements, three elastic
elements, and cell-insert constructions. Other practical configurations
which result in design simplifications include orthogonally symmetric cross-
sections and sheathing additions to cross-sections having an axis of

symmetry. Discussions of these special cases follow.

Two-elastic-element structural composites. - In using Equation (3)

to determine the geometrical parameter of two-elastic-element structural
composites, it is necessary to determine the location of the composite
neutral axis as defined by Equation (5) in order to evaluate (EI)_; this
frequently results in a laborious analysis. By selecting the composite
neutral axis as the arbitrary reference axis for taking the extensional stiff-
ness moment, an equation for geometrical parameter can be developed for
two-elastic-element structural composites which does not require knowledge
of the location of the composite neutral axis. In this case, the geometrical

parameter is given by



MA; Ag d°
(MA;L + Ag) (MI]_ + Ig)

Y = (6)

where M = E;/Ez 1is the modulus ratio, A; and A, are the cross-section
areas of the two elastic elements, I and I, are the moments of inertia of
the two areas, and d is the distance between the neutral axes of the two
elastic elements. The requirement of determining the location of the compos-
ite neutral axis is replaced by that of detemining the distance between the
neutral axes of the two elastic elements. This determination is relatively
easy to make thereby simplifying the analysis of structural composites

comprised of two elastic elements.

Three-elastic-element structural composites. - Simplified equations

for the geometrical parameter of three-elastic-element structural composites
can bé developed when two of the three elements are identical. In this case,

the geometrical parameter is given by

v EyAy [Ead; (di~dz)® + EpAs (dy °+d:®)] v
- (ZEJ_A]_ +B3Ag) (ZB]_ I +E2 Ia) )

This equation requires the determination of dy, and dz, which are the
distances between the neutral axes of the two identical elements and the
third element; these distances have the same sign when the two identical
elements are located on the same side of the third element and are of
opposite sign when they are located on opposite sides of the third element.
This determination is easily made compared to the difficulty generally
encountered in establishing the location of the composite neutral axis by
use of Equation (5).

If the three elements are arranged to produce a symmetrical cross-
section (d; = -d; =d), the geometrical parameter is given by
2MA, d°

Y= oML, 41, | )
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where d 1is the distance between the neutral axes of the two outer (identical)
elements and the neutral axis of the inner element (which is also the compos-

ite neutral axis since the inner element must be symmetrical for this case).

Cell-insert structural composites. - Cell-insert composite structures

consist of a cellular structural member in which structural insert members are
separated from the hollow cells by a layer.-of viscoelastic shear-damping
material, as illustrated in Figure 2.10. The geometrical parameter for cell-

insert constructions is evaluated by application of Equation (4) to obtain

2 2
EcAceC + ZEiAiGJi

ECIC + ZEiIi

where € represents the distance from the neutral axis of a given area

element to the composite neutral axis, and the subscripts ¢ and i refer

to cell and insert, respectively. This equation applies both for symmetrical
and unsymmetrical cross-section configurations and requires the determination
of the composite neutral axis location by use of Equation (5). Furthermore, it
is assumed that the cell-member is constructed from only one material, while

the inserts are of arbitrary shape, size, and material.

The equation for geometrical parameter can be simplified for the case
of a symmetrical cross-section. This implies that the neutral axis of the
cell-structure coincides with the composite neutral axis, thereby requiring the

distance €c to be zero. Hence, the geometrical parameter is given by

SE.AE.°
1 11
EJI, + ZE T

Y = (10)

This equation applies for example, to the square tube, rectangular bar, and
I-section cell-insert constructions shown in Figure 2.10(@), (d) and‘(e),

respectively.

A further simplification can be made by requiring the inserts to be
of the same size and material, and be located at the same distance €.l from

the composite neutral axis. Designating Ni as the total number of inserts

11



(Ni =2, 4, 6 ---), the geometrical parameter is given by

€i\¢
(%)
Y = (N.=2, 4, 6 ———) (11
_<_> <_> 1 ’
Ni Ei Ii

where r, = N Ii/Ai' This equation applies, for example, to the rectangular

bar cell-insert construction shown in Figure 2.10(d), and would also apply
to the I-section construction shown in Figure 2. 10(e) if the inserts were
identical in size, material and orientation relative to the composite neutral

axis.

There are a number of practical cell-insert symmetrical design
configurations for which EcIc > > NiEiIi' For these cases, the geometrical

parameter is given approximately by

E\/1\(€
Y NNi fl T N\ (Ni =2,4,6---) (12)
“\"e/ \'c/ \'i

This equation, for example, provides a means of rapidly determining the
geometrical parameter of the cell-insert I-beam shown in Figure 2. 10 (e)
when identical inserts having a relatively low value of flexural rigidity are

employed.

Orthogonally symmetric cross-sections. - When evaluating the

geometrical parameter of a structural composite, the plane in which flexural
vibrations occur must be specified. For cross-sections of arbitrary shape,
a different geometrical parameter may apply for each plane of vibration
considered. However, under certain circumstances, the geometrical
parameter will be invariant with the plane of vibration and the direction of

the neutral axis is immaterial.

An example of this situation is a cross-section which has orthog-

onal symmetry. This type of symmetry requires that the cross-section

12




geometry be symmetrical about a given axis and also be identical to the
geometry relative to an orthogonal axis. For this case, it can be shown that
the geometrical parameter has the same value regardless of the direction of
the neutral axis. Typical structural composites which satisfy this require-
ment include all the bar designs shown in Figure 2.5 with the exception of
the design of Figure 2.5(e). Also satisfying the orthogonal symmetry require-

ment are the tube designs shown in Figure 2.6(@, b, c) and in Figure 2. 10(a).

Effect of symmetrical sheathing addition. - In some instances, it may
be desirable to provide a longitudinal elastic sheathing around the periphery of

a viscoelastic shear-damped beam for use as an element positioning device, to

offer protection from various environments, to improve the physical appearance
of the structural member, etc. The effect of such an addition on the geomet-
rical parameter may be easily evaluated for the case wherein a constant thick-
ness sheathing is added to a symmetrical cross-section such that its neutral
axis coincides with the composite neutral axis of the beam. The addition of
the sheathing increases the flexural rigidity for the uncoupled and coupled
conditions by the same amount and, using Equation (4), the modified geomet-

rical parameter Y’ may be shown to be

o 1
Y = (EI)s Y (13)

1+,

where (EI)s is the flexural rigidity of the sheathing, and Y and (EI); are

the geometrical parameter and static flexural rigidity, respectively, of the
composite beam prior to the addition of the sheathing. Hence, with the
determination of the sheathing flexural rigidity and using the values of
geometrical parameter and static flexural rigidity previously developed for the
beam, the decrease in geometrical parameter caused by the addition of the
sheathing is readily evaluated. The modified static flexural rigidity of the new
composite beam is given by (EI)o’ = (EI)o + ED) .

Examples of composite beams to which a sheathing may be added for
the reasons given above are the bars shown in Figure 2.5 (@, b, ¢, d, f) and
tubes shown in Figure 2.6(, d). Since the addition of the sheathing reduces

13




the geometrical parameter of the composite beam, consideration should be
given to the use of a thin sheathing made from a low-modulus material which
performs its intended function without providing a significant increase in the

static flexural rigidity of the beam.
Formulation of Design Parameters

By using either the generalized or appropriate simplified version of
the equation for geometrical parameter previously presented, specific design
relationships for the geometrical parameter Y of the viscoelastic shear-
damped structural composites shown in Figures 2.1 to 2. 8 can be developed

in the following form:

Y=YO (Ml R, Tl DI Sl N) [Y/YO] (14)

where Yo 1is the value of the geometrical parameter for zero thickness of the
viscoelastic damping layer and Y/Y, is a geometrical parameter correction
factor specifying the effect which the thickness of the viscoelastic damping
layer HV has on the value of the geometrical parameter. To keep the design
equations for geometrical parameter as general as possible, the following

dimensionless parameters are employed:
M = E,/E; = ratio of modulii of elasticity
R = H,;/H: = thickness ratio
T = Hs/Hc = thickness ratio
D = B/A = dimension ratio
S = H/A = dimension ratio
N = number of elastic elements

where E represents modulus of elasticity, H represents thickness, and B
and A (with no subscript) represent overall size dimensions. In some cases,
A (with identifying subscript) is also employed to represent cross-section
area; this distinction is made quite obvious for the various structural

composite design cross-sections considered. Figures 2.1 to 2.8 define

14



the dimensional parameters for each specific structural composite design.

Any consistent set of units may be used for these parameters and, for max-

imum generalization, only dimensionless design graphs are developed for the

geometrical parameter.
Effect of viscoelastic damping layer thickness. - For the structural

composite designs which have geometrical parameters described by
Equation (14), the geometrical parameter correction factor may be written

Y/Y, = (1+2V)° (15).

where the viscoelastic thickness parameter V represents the ratio of the
viscoelastic damping layer thickness HV to a reference thickness. This
equation is shown in the graph below, which indicates that the geometrical

parameter is increased by a correction factor ranging from one to 1.7 for
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values of the viscoelastic thickness parameter ranging from 0 to 0.15. The
viscoelastic thickness parameter is limited to small values in accordance
with the assumption that the viscoelastic damping material layers incor-
porated in the structural composite are thin compared to the thicknesses of

the elastic elements of the structural composite.

Increasing the thickness of the viscoelastic damping layer has its
greatest effect on the geometrical parameter when it results in a significant
increase in the distance between the neutral axes of the elastic elements of
the structural composite. This is the case, for example, for the composite
structural plates and beams shown in Figures 2.1 to 2.4 and 2.7. For the
composite structural bars, tubes and dumbbell model having a fixed overall
size shown in Figures 2.5, 2.6 and 2.8, however, an increase in the visco-
elastic damping material thickness has a less significant effect and, in
certain instances, would cause a decrease in the static flexural rigidity (ET)o
because of the resulting reduction of cross-section area of some elastic
elements. The bar design shown in Figure 2,5 (i) and the tube design shown

in Figure 2.6(e) are examples of this situation,

For a number of practical cases, the reference thickness employed in
the definition of the viscoelastic thickness parameter V can be defined
solely in terms of thicknesses of elastic elements comprising the structural
composite. In more complicated cases, the reference thickness definition
may contain some of the thickness or dimension ratios previously defined in
addition to the thicknesses of the elastic elements. For the composite struc-
tural plates and shapes shown in Figures 2.1 to 2.4 and 2.7, the general
form of the viscoelastic thickness parameter V is

H
Ve ot (16)

H, + X Hs
where the thickness HV of the viscoelastic damping layer is assumed
constant throughout the composite structure, H; and Hy are thicknesses
of the elastic elements of the structural composites, and X is a factor which

may be either purely numeric or a function of other dimensionless parameters.

16



With the exception of the unsymmetrical three-laminate plate designs
and the plate designs consisting of N identical structural sheets, the
factor X for the composite plate designs is unity; this includes the design
configurations shown in Figures 2.1 (@, c), 2.2(@, b), 2.3(@, c), and
2.4(@, b).

For the unsymmetrical three-laminate plate designs, it can be shown
that the geometrical parameter correction factor Y /Y, is greater than that
indicated by Equation (15) for values of the thickness ratio H,/H: less than
unity, where the viscoelastic thickness parameter V is defined by
Equation (16) with A= 1. For values of the thickness ratio H,/H:z greater
than unity, the correction factor Y /Y, is less than that indicated by
Equation (15). Finally, the correction factor Y/Y, is given exactly by
Equation (15) when the thickness ratio H,/Hz 1is equal to unity. Hence,
the effect of the viscoelastic damping layer thickness on the value of the
geometrical parameter of unsymmetrical three-laminate plate designs can be

stated qualitatively as follows:

Y/Yo =2 (1+2V)° (Hi/Hz: < 1.0) a7)
17
Y/Yo < (1+2V)® (Hi/Hz = 1.0)

To obtain a quantitative evaluation of this effect, the geometrical parameter Y
can be determined directly for specified values of the viscoelastic thickness
parameter V ; however, the results cannot be expressed as a correction factor
in the form indicated by Equation (14).

For the plate designs comprised of a lamination of N identical

structural sheets, as shown in Figure 2.1(b) and 2. 3(b), the viscoelastic-

thickness parameter V is given by
I_Iv
V= H (18)

where H is the thickness of the structural sheets (solid or honeycomb)

employed in the composite structural plate designs.
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More'complex forms of the viscoelastic thickness parameter V apply
for the composite beam design configurations shown in Figure 2.7. The
factor A for the composite angle, channel, T-section and I-section designs
shown in Figure 2.7 is given by

Angle: Ay = %fss—z; Az = % (19)
Channel: A SS[[;ZZ ((11"_22))] 20)
T-Section: A = S—S‘D% (21)
I-Section: X = % (22)

where the dimension ratios S and D are as previously defined. Two values
of the factor A are given for the angle design: A; applies for the neutral
axis at 45 degrees to and intersecting the sides of the angle, whereas Xz
applies for the neutral axis at 45 degrees to the sides of the angle passing
through the apex of the angle construction. For specific values of the dimen-
sion ratios S and D for a given composite structural design configuration,
the factor A may be calculated and the effect of the viscoelastic damping

layer thickness evaluated by application of Equations (15) and (16).

Equivalent modulus concept. - A simplification in the analysis and

development of design data for structural composites involving honeycomb
sheets, box-beam or I-beam constructions c¢an be introduced by use of the
concept of equivalent modulus. By equating the flexural rigidity of a solid
rectangular sheet to that of a honeycomb sheet, box-beam, or I-beam construc-
tion of equal thickness and width, an "equivalent" modulus of the solid sheet

can be determined.

For example, for a honeycomb sheet comprised of two skin members
of thickness HS bonded to a core of thickness HC as shown in Figures 2.2

and 2. 3, the equivalent modulus E of a solid structural sheet, which has a

18



rectangular cross-section and a thickness H = ZHS + HC, is given by

E _ (2T+1)° -1 23)
Ey @T+1)3 '

where EH is the modulus of the honeycomb sheet skin material and
T = HS/HC is the ratio of the skin thickness to the core thickness of the
honeycomb sheet. This equation, which is shown in the graph below,

indicates that the modulus ratio is given approximately by E/EH ~ 6T for
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values of the thickness ratio I-IS/HC < 0.04. It is significant that when
HS /Hc 2 (0.5, the effective modulus E very nearly equals the modulus of

the honeycomb skins EH.

A similar analysis applied to box-beam and I-beam constructions

of the type shown in Figure 2.4 results in the following relation for the
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modulus E of a solid structural sheet having an equivalent bending stiffness

a. b .
E _ (@T+1)"+"/B -1 4
Ep (2T+1)° 24)

w here EB is the modulus of the box-beam material, T = HS/Hc is the ratio
of the skin (or flange) thickness to the core (or web) thickness of the box-
beam (or I-beam) construction, and b/B is the ratio of the total effective
core (or web) width to the width of the beam. This equation, which is shown

in the graph below, indicates that the modulus ratio E/EB approaches the
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value b/B as the thickness ratio Hs/Hc approaches zero. For values of
the thickness ratio Hs/Hc 2 (0.5, the effective modulus E very nearly equals
the modulus of the beam E,, especially for larger values of the width

ratio b/B. When b/B = 1, the modulus ratio E/EB approaches unity

since the box- or I-beam essentially becomes a solid rectangular beam,
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Finally, for the case of b/B = 0, the box-beam and I-beam constructions
degenerate into an idealized honeycomb sheet and the relation for the
modulus ratio E/EB reduces the relation for the modulus ratio E/EH for

the honeycomb sheet.

The graphs for the equivalent modulus ratios provide a rapid means
of determining the bending stiffness of a honeycomb sheet and box-beam or
I-beam constructions since the effective flexural rigidity is given simply by
ED = EB(ZHS+HC)3/12, where E and B are the equivalent modulus and

the width of the structural member, respectively.

While the equivalent modulus concept may be applied directly to
determine the modulus of a solid rectangular cross-section sheet having the
same thickness, width and bending stiffness as a honeycomb, box-beam, or
I-beam construction, care is required with regard to its use in the develop-
ment of mathematical expressions for geometrical parameter. Since the
transfer flexural rigidity (EI)t of this type of construction is not reproduced
by the "equivalent" solid sheet, this concept can only be employed for
purposes of simplification of geometrical parameter analyses when the over-
all geometry of the composite structure is such that the neutral axis of the
structural member for which an equivalence is sought is identical for the
uncoupled and coupled conditions, This requirement essentially stipulates
that the transfer flexural rigidity of the honeycomb, box-beam or I-beam
construction is zero and the transfer flexural rigidity of all other structural
elements are unchanged by substitution of the "equivalent" solid structural
sheet. Consequently, the equivalent modulus concept provides a simplifica-
tion in the determination of the geometrical parameter of the symmetrical
double-constrained honeycomb, box-beam, and I-beam structural composites
shown in Figures 2.2(b), 2.4() and 2.4 (b), respectively. For these struc-
tural composites, the structural member to be replaced by an equivalent solid
sheet is oriented in a manner such that its neutral axis of flexure is located

identically for the uncoupled and coupled conditions.
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Geometrical Parameter Design Data

The specific structural composites which have been evaluated for
geometrical properties important in the design for high damping are shown
in Figures 2.1 to 2,8. Equations and graphical presentations are developed
for the geometrical parameter Y, in terms of the modulus, thickness and
dimension ratios previously defined. An indication is made with regard to
the applicability of the geometrical parameter correction factor Y/Yo for
determining the value of the geometrical parameter Y. A wide variation in
the values of the modulus and size parameters, keeping within the realm of
practicality of design, is included in the design graphs to provide flexibility
in the selection of cross-section configurations which have a satisfactory
value of the geometrical parameter. Equations are provided for the static
flexural rigidity (EI); and the structure weight per unit length w in terms of
cross-section dimensional characteristics, modulus of elasticity E, and the
weight density Y (weight per unit volume), For designs involving two elastic
elements, the mean length of the viscoelastic damping layer in the cross-
section plane BV and the distance between the neutral planes of the two

elastic elements d are also provided,

Laminated structural sheets.- Cross-section configurations and

design equations for damped structural plates consisting of laminated solid
structural sheets are presented in Figure 2, 11(4), Included are designs
comprised of two, three (symmetrical and unsymmetrical) and N identical
solid structural sheets. The geometrical parameter Y, for these damped
plate designs is presented graphically in Figures 2. 11(B)- (D) for parametric
variations of the modulus ratio E,/Es and the thickness ratio H;/H: .

Since the geometrical parameter correction factor stated by Equation (15)

is not directly applicable to the unsymmetrical three solid sheet plate design,
graphs of the geometrical parameter Y are presented in Figure 2, 11(E) for
values of the viscoelastic thickness parameter V equal to (a) 0,05, (b) 0,10,
(c) 0.15 and (d) 0.20, where V is given by Equation (16) with X equal to

unity.

22



To evaluate the relative merits of the symmetrical and unsymmetrical
three-elastic-element plate designs with regard to the value of geometrical
parameter Yo, the ratio YS/Yu is presented graphically in Figure 2. 11(F),
where YS and Yu are the geometrical parameters Y, for the symmetrical
and unsymmetrical designs, respectively. The symmetrical design has a
larger geometrical parameter for modulus ratios E;/E; greater than unity,
for all values of the thickness ratio H, /H,. For modulus ratios less than
unity, the unsymmetrical design has the larger geometrical parameter. Finally,
the symmetrical and unsymmetrical designs have the same value of geomet-

rical parameter for a modulus ratio of unity.

Geometrical parameter design graphs are not presented for the plate
design comprised of N identical solid sheets since the governing equation
is simple enough to allow mental calculation. Very large values of the
geometrical parameter Y, are attained as the number of equal thickness and

stiffness sheets is increased.

The values of modulus and thickness ratios which maximize the
geometrical parameter Y, may be determined in concept by determining the
conditions for which dY,/dR= 0. For the two solid sheet design, the thick-
ness ratio at which the maximum geometrical parameter (YO)max = 3.0 occurs

is given by

(H/He)y = Eo/E (25)

max

For the three solid sheet designs, the conditions for maximization of geomet-
rical parameter may be obtained numerically in lieu of the differential calculus

technique which does not provide a convenient closed form solution.

The results of a maximization analysis are shown in Figure 2.11(G),
where the thickness ratio for maximizing Y, is shown at (@) and the
value (YoJyax is shown at (b) as a function of the modulus ratio. For
modulus ratios greater than unity, the thickness ratio for maximum geometrical
parameter is less than unity; conversely, for modulus ratios less than unity,
the thickness ratio for maximum geometrical parameter is greater than unity.

The thickness ratio for which the geometrical parameter is maximized is
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different depending upon whether two or three laminates are employed;
however, the same thickness ratio maximizes the geometrical parameter for

the symmetrical and unsymmetrical three laminate design.

The curves presented in Figure 2. 11(G) indicate that very large values
of the geometrical parameter can be attained with the three laminate design,
especially for the symmetrical configuration. For modulus ratios greater
than unity, the symmetrical configuration provides a higher maximum geomet-
rical parameter whereas, for modulus ratios less than unity, the unsymmetrical

configuration provides higher values of the maximum geometrical parameter.

Constrained honeycomb sheets, - Cross-section configurations and

design equations for damped structural plates consisting of constrained
honeycomb structural sheets are presented in Figure 2.12(). Included are
single-constrained and double-constrained (symmetrical and unsymmetrical)
designs comprised of laminated honeycomb and solid structural sheets. The
geometrical parameter Y, is presented graphically in Figures 2.12(B) and (D)
for the single-constrained and unsymmetrical double-constrained honeycomb
plate designs. Parametric variations of the thickness ratios Hs/Hc and
H,/Hz are presented, with specific values of the modulus ratio E; /EH
equal to (@) 1/3, (b) 1.0, (c) 3, and (d) 10.

Graphs of the equivalent modulus ratio Ez/EH and geometrical
parameter Yo are presented in Figure 2, 12(C) for the symmetrical double-
constrained honeycomb design. Broad parametric variations of the modulus
ratio E,/Es and thickness ratio H;/Hz can be presented graphically in this
case by use of the equivalent modulus concept for the central honeycomb
structural element. Equation (23) or its graphical equivalent provides a means
of determining the values of the equivalent modulus ratio EQ/EH in terms of
the thickness ratio Hs/Hc' Using this information, the effective modulus
ratio E; /E; is calculated and the graphical solution for the symmetrical
three solid sheet design may be applied directly to determine the geometrical
parameter in terms of the modulus ratio E;/E; and the thickness ratio H;/Hs.
This procedure can be carried out in its entirety by use of the graphical data

presented in Figure 2, 12(C).
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laminated honeycomb sheets.- Cross-section configurations and

design equations for damped structural plates consisting of laminated
honeycomb structural sheets are presented in Figure 2. 13(4). Included are
designs comprised of two, three (symmetrical and unsymmetrical) and

N identical honeycomb structural sheets. Determinat‘ion of the geometrical
parameter Y, is considerably simplified when the thickness ratios Hgi1/Ha
and Hgz /Hce (or Hs/Hc for the plate design comprised of N identical sheets)
approach zero. In this case, the geometrical parameter approaches one-third
of the value which would exist if the structural sheets were solid; hence, the
geometrical parameter Y, can be determined by use of Figures 2. 11(B)~ (D) in

terms of the modulus ratio E,/Ez and thickness ratio H;/Hs.

The geometrical parameter Y, is presented graphically in
Figures 2.13(B)-(F) for parametric variations of the thickness ratios Hsi /Hca
and Hsz/Hez, with various specific values of the modulus ratio E, /Ez and
thickness ratio H;/Hsz. Design graphs for values of the modulus ratio E,/Ez=1
and thickness ratio H,/H> equalto @) 1.0, (b) 1.5, (c) 2 and (d) 4 are
provided in Figure 2. 13(B) for the two honeycomb sheet design. For the three
honeycomb sheet designs having values of the thickness ratio Hy /Hz equal
to (@) 0.25, (b) 0.5, (c) 1.0 and (d) 2, the geometrical parameter Y, is
shown graphically in Figures 2.13(C) and (E) for the modulus ratio E;/Ex = 1,
and Figures 2. 13(D) and (F) for the modulus ratio E,/Ez; = 3.

A graph of the geometrical parameter Y, is presented in Figure 2, 13(G)
for the damped structural plate comprised of N identical honeycomb sheets.
As the number of identical honeycomb sheets is increased, the value of the
geometrical parameter is increased. For low values of the thickness
ratios HS/HC . the geometrical parameter is given approximately by
Yo = —:1; (N® -1): this approximation is applicable, for example, for HS/HC< 0.1
when N= 2, Hs/Hc <0.05 when N= 3, and HS/HC <0.02 when N = 4,

Box-beam and I-beam constructions. - Cross-section configurations,

design equations, and graphs of the equivalent modulus ratio Eg/EB and
geometrical parameter Y, for damped symmetrical double-constrained plates
incorporating box-beam and I-beam constructions are presented in Figure 2. 14.

. Broad parametric variations of the modulus ratio E;/E; and thickness
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ratio H;/H: can be presented graphically in this case by use of the equiv-
alent modulus concept for the céntral structural element. Equation (24) or
its graphical equivalent provides a means of determining the equivalent value
of the modulus ratio Eg/EB in terms of the thickness ratio Hs/Hc‘ Using
this information, the effective modulus ratio E;/E: is calculated and the
graphical solutions presented for solid sheet designs are applied directly to
determine the geometrical parameter in terms of the modulus ratio E; /Ez and
the thickness ratio Hi/Hz. This procedure can be carried out in its entirety
by use of the graphical data presented in Figure 2. 14, When the width

ratio b/B becomes very small, the geometrical parameter becomes approx-
imately equal to that for a double-constrained honeycomb sheet as shown

graphically in Figure 2,12 (C).

Structural bar designs. - Cross-section configurations and design

equations for damped structural bars consisting of a multiplicity of longitu-
dinal elastic elements arranged to produce various cross-section shapes are
presented in Figure 2.15(). Included are designs for square and round
cross-section bars, as well as bars having cross-sections intermediate to
these shapes. The geometrical parameter Y, is presented graphically in
Figures 2, 15(B)-(L).

Graphs of the geometrical parameter Y, are presented in
Figure 2.15(B)-(E) for composite structural bar designs comprised of a central
elastic element in the shape of a cross and a symmetrical set of four elastic
elements with square, quarter-round or triangular shapes. Data are presented
for parametric variations of the modulus ratio E;/E; and dimension ratio B/A.
These bar designs have orthogonally symmetric cross-sections; hence, the
value of the geometrical parameter Y, given in the design graphs applies

for any plane of flexural vibration.

Graphs of the geometrical parameter Y, are presented in
Figure 2.15(F)-(H) for composite structural bar designs comprised of
N identical insert members of rectangular cross-section placed in each of
four rectangular grooves located on the faces of a square bar. Data are
presented for parametric variations of the modulus ratio E,/Ez and

dimension ratio B/A. Values of the dimension ratio H/A equal to 0. 05 and
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0.1 are specified in Figures 2. 15(F) and (G), respectively, and values of this
ratio equal to 0.15 and 0. 2 are specified in Figure 2.15(H). Specific values
of the number of elastic insert elements N range from one to infinity, with the
final graph for each value of the specified dimensicn ratio H/A being
applicable for the indicated range of N values. Tor the case of the dimension
ratio H/A equal to 0.2, one design graph provides a good approximation for
the geometrical parameter Y, for all values of the number of elastic insert
elements N, as presented in Figure 2, 15(H); consequently, for this value.

of H/A, there is no advantage to employ a large number of insert elements
since the geometrical parameter provided by the insertion of a single
rectangular member in each groove cannot be significantly increased. This
composite structural bar design has an orthogonally symmetric cross-section;
hence, the value of the geometrical parameter Y, given in the design graphs

applies for any plane of flexural bending.

Graphs of the geometrical parameter Y, are presented in
Figures 2.15 (I) and (J) for a composite structural bar design comprised of
N thin solid sheets laminated to a central square bar element. Data are
presented for parametric variations of the modulus ratio E,/E; and dimen-
sion ratio H/A, with the number of laminated solid sheets N equal to (@) 1,
(b) 2, (c) 3 and (d) 6. Since the cross-section of this bar design is not
orthogonally symmetric, the design graphs in Figures 2.15() and (J) are

presented for the two principal planes of flexural bending.

A graph of the modified geometrical parameter Y (Ac/Ai) is presented
in Figure 2.15(K) for square and round composite structural bar designs
comprised of a large number of elastic insert elements placed within square
and round structural tubes. Data are presented for parametric variations of
the modulus ratio E,/Ez and the dimension ratio B/A. The geometrical
parameter Y is given by the product of the modified geometrical parameter
obtained from Figure 2. 15(K) and the ratio of the total area of inserts A.1 to
the area of the hollow cell Ac' where Ac = B® for the square bar and
Ac = 7 B®/4 for the circular bar. This composite structural bar design has
an orthogonally symmetric cross-section; hence, the value of the geometrical
parameter Y obtained by use of the design graph applies for any plane of
flexural vibration.
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A graph of the geometrical parameter Y, is presented in Figure 2. 15 (L)
for a round structural composite' bar comprised of four quarter-round elastic
insert elements placed within a round structural tube. Design data are
presented for parametric variations of the modulus ratio E;/Ez and the
dimension ratio B/A. Since this composite structural bar design has an
orthogonally symmetric cross-section, the geometrical parameter Y, given

by the design graph applies for any plane of flexural vibration.

Structural tube designs. - Cross-section configurations and design

equations for damped structural tubes consisting of a combination of solid
structural tubes and longitudinal elastic constraining elements are presented
in Figure 2,16 (). Included are designs for square and round cross-section
tubes, for which the geometrical parameter Yo are presented graphically in
Figures 2.16(B)-(M).

Graphs of the geometrical parameter Y, are presented in
Figure 2.15(B)-(E) for a composite structural tube design comprised of
N identical rectangular strips placed on the four outer faces of a square
tube., Data are presented for parametric variations of the modulus ratio E; /E2
and thickness ratio H; /Hz. The number of rectangular strips N is equal
to @) 1, (b) 2, (c) 4, and (d) 10 -00 in the design graphs for specific values
of the dimension ratio Hz/A equal to 0.05, 0.1, 0.15 and 0.2 in
Figures 2.16(B), (C), (D) and (E), respectively. For each value of the
dimension ratio Hga/A considered, a single design graph suffices for values
of N ranging from ten to infinity. Since this composite structural tube
design has an orthogonally symmetric cross-section, the value of the
geometrical parameter Y, given in the design graphs applies for any plane

of flexural bending.

A graph of the geometrical parameter Y, is presented in Figure 2.16(F)
for a composite structural tube design comprised of four structural angles
placed on the outside corners of a square tube., Data are presented for
parametric variations of the modulus ratio E;/E; and thickness ratio H, /Hz,
with specific values of the dimension ratio Hz/A equal to (@) 0.05, (b) 0.1,
(c) 0.15 and (d) 0.2, Since this composite structural tube design has an

orthogonally symmetric cross-section, the value of the geometrical
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parameter Y, given in the design graph applies for any plane of flexural
bending.

A graph of the geometrical parameter Y, is presented in Figure 2,16(G)
for a composite structural tube design comprised of four structural angles
placed on the outside corners of a square tube, with four rectangular sheets
placed on the four faces formed by the angle members, Data are presented
for parametric variations of the modulus ratio E; /Ez and thickness
ratio H, /Hy , with specific values of the dimension ratio H/A equal to
(@) 0.05, (b) 0.1, (c) 0.15 and (d) 0.2. TFor this design, the structural
angle and sheets laminated to the central tube element have the same
thickness H; and modulus E;. Since this composite structural tube design
has an orthogonally symmetric cross-section, the value of the geometrical
parameter Y, given in the design graph applies for any plane of flexural

bending.

Graphs of the geometrical parameter Y, are presented in Figure 2. 16 (H)
and (I) for a composite structural tube design comprised of N identical tube
segments placed around the outer circumference of a circular tube. Data are
presented for parametric variations of the modulus ratio E;/Ez and the
thickness ratio H;/Hz. The number of tube segments N is equal to (@) 3,
b) 4, (c) 6 and (d) infinity in the design graphs for specific values of the
dimension ratio Hz/A equal to 0.05 and 0.1 in Figures 2. 16 (H) and (I),
respectively. It can be shown that, for values of N greater than 2, the value
of the geometrical parameter Y, given in the design graphs applies for any
plane of flexural bending, even though there may not be orthogonal symmetry
(e.g., N = 3).

Graphs of the geometrical parameter Yo are presented in
Figure 2,16 (J)- (M) for a composite structural tube design comprised of
N identical tube segments placed between two concentric circular tubes.
Data are presented for parametric variations of the thickness ratios Ha/H:
and H, /Hz, with the modulus ratio Ez/Ez= 1.0. The number of tube
segments N 1is equal to (@) 3, (b) 4, '(c) 6 and (d) infinity in the design
graphs. Values of modulus ratio E;/Es equal to 1.0 and dimension ratio Hz/A
equal to 0.05 and 0.1 are considered in Figures 2.16(]J) and (K), respectively.

29




Similarly, values of the modulus ratio E;/Ez equal to 3.0 and dimension
ratio Hz/A equal to 0.05 and 0.1 are considered in Figures 2.16(L) and (M),
respectively. For values of N greater than 2, the value of the geometrical
parameter Y, given in the design graphs applies for any plane of flexural

bending.

Structural shape beams. - Cross-section configurations and design

equations for damped angle, channel, T-section and I-section beams, which
consist of solid rectangular sheets laminated to the outside of conventional
structural shape beams, are presented in Figure 2.17(d). It should be noted
that the value of the geometrical parameter is much less (and in some cases
could become zero) when the rectangular sheets are laminated on the inside
surface of the structural shape beams. For example, consider the channel
and T-section beams. If the thickness of the rectangular sheets were such
that their neutral axes coincided with those of the channel or T-sections,
the transfer flexural rigidity would be zero and, in accordance with

Equation (4), the geometrical parameter would be zero. Hence, only designs

providing desirable values of the geometrical parameter are considered.

Graphs of the geometrical parameter Y, are presented in Figure 2.17(B)-
(E) for the angle, channel, T-section and I-section beams, respectively. Data
are presented for parametric variations of the modulus ratio E,/Ez and thick-

ness ratio H, /Hs.

Since the cross-section of the composite structural angle design is not
orthogonally symmetric, the design graphs in Figure 2. 17 (B) present the
geometrical parameter Yo for the two principal planes of flexural bending.
Values of the dimension ratio Hz/A equal to 0.1 and 0.2 are specified for
the design graphs and the value of the factor A is indicated which may be
used with Equations (15) and (16) to evaluate the effect of the viscoelastic

damping layer thickness on the geometrical parameter.

Practical values of the dimension ratios B/A and Hp/A are specified
in the design graphs for the channel, T-section and I-section beams. In
each case, the value of the factor A is indicated which allows the effect
of the viscoelastic damping layer thickness on the geometrical parameter

to be evaluated by use of Equations (15) and (16). The geometrical parameter
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design graphs for the channel and T-sections which are presented in

Figure 2, 17(C) and (D), respectively, indicate that a general decrease in the
geometrical parameter occurs for an increase in the dimension ratio B/A.
This is a somewhat unexpected result since there is a general trend for the
geometrical parameter to increase with increasing dimension ratio B/A and
to approach the value of the geometrical parameter for solid plates as B/A
approaches infinity. However, in the region of greatest interest (2 < B/A < 4
for the channel and 1 < B/A < 2 for the T-section) the opposite is true. An
alternate method of obtaining the geometrical parameter of the double-
constrained I-section beam presented in Figure 2. 17 (E) is to employ the
previous analysis of this type of construction based on the use of the

equivalent modulus concept, as presented graphically in Figure 2. 14,

Dumbbell model. - A cross-section configuration, design equations

and a graph of the geometrical parameter Y, for a damped dumbbell model

is presented in Figure 2.18. The cross—-section areas A; and Az may be of
any shape and it is assumed that the distance H between the symmetrically
located areas is substantially greater than the square root of the cross-sectior
areas. Data are presented for parametric variations of the modulus

ratio E,/Ez and the area ratio A;/A,. This design graph provides a first-
order approximation of the geometrical parameter Y, of complex structural

assemblies such as truss constructions.

Geometrical Parameter Design Considerations

From the point of view of producing structural composites with high
damping, it is desirable to design structure cross-sections having high
values of the geometrical parameter Y. The design data presented for the
various viscoelastic shear-damped structural composites allow the selection
of modulus and geometry to attain a desired value of the geometrical
parameter. For a given selection of structural materials, the dimensional
properties of the cross-section can frequently be selected to maximize the

value of the geometrical parameter,

A value of the geometrical parameter Y ranging from 0.5 to 5.0 is
generally required to design highly damped structures which satisfy other
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performance requirements such as static stiffness, weight, stress, structure
resonant frequency and size. The structure loss factor 7 may not be
sufficiently high for values c¢f the geometrical parameter less than 0.5,
whereas a substantial increase in values of the geometrical parameter
greater than 5 may provide only a slight increase in the structure loss
factor [Ref. 8]. Each application must be evaluated on its own merits,
however, since particular design and performance requirements may justify

the selection of a value of geometrical parameter out of this range.

The design graphs indicate that it may be advantageous, with regard
to attaining a high value of the geometrical parameter Yo, to employ materials
having different modulii of elasticity in the structural composite. This is the
case, for example, for the constrained honeycomb sheets and the structural
bar and tube designs considered. However, for designs such as the damped
plate in the form of two laminated solid sheets, the use of different materials
for the two elastic elements does not provide any advantage with regard to the
maximum obtainable value of the geometrical parameter Y, ; however, it does

provide flexibility in the selection of the thicknesses of the solid sheets.

The choice of materials in the fabrication of a structural composite
depends on many considerations other than structural damping, For example,
protection from hostile environments, thermal conduction, electrical
conduction, radiation shielding, strength, weight, etc., all represent
broader design implications which may suggest the use of a specific

combination of structural materials.

Certain structural composite designs involve a number of elastic
elements N which generally should be made large to obtain high values of
the geometrical parameter. However, the rate of change of the geometrical
parameter with N frequently decreases for higher numbers of elastic elements,
and the design graphs can be employed to determine the most advantageous

number of elastic elements from the point of view of structural performance

and fabrication.

The design data presented herein allows the evaluation of the
geometrical parameter, static flexural rigidity, and structure weight for

changes made in modulus, size and number of elastic elements comprising
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the structural composite. Hence, by judicious variation of the modulus and
geometry parameters, a compromise between all design and performance

requirements can be attained,
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SECTION 3: DESIGN OF TWO-ELASTIC-ELEMENT STRUCTURAL COMPOSITES

This section of the report presents the development of design
procedures for two-elastic-element structural composites ba sed on fundamen-
tal equations previously developed for the loss factor and related parameters
for viscoelastically damped beam structures., The assumptions employed in
the derivation of the fundamental equations are reviewed and typical structural
composite designs for which the theory applies are identified. Both a manual
design procedure using graphical design data and an automated procedure
employing digital computer techniques are developed. The implications of
other design considerations such as temperature, static stiffness, weight
and static load distribution are also discussed. An example of the use of

these procedures is presented in Section 4 of this report.
Fundamental Equations for Damping Parameters

The structure loss factor 7 is defined as the ratio of the imaginary and
real parts of the complex flexural rigidity (EI)* = (EI)(-in). For viscoe astic
shear-damped structural composites comprised of two elastic elements and an
intervening viscoelastic damping layer, the complex flexural rigidity (EI)* is
given by [ Ref. 5] :

*

€D = EDo [1+ X _ Y] (26)
1+X

where the complex shear parameter X* = X (1-iB). Evaluation of the complex
flexural rigidity for the uncoupled condition (X= 0) and the coupled
condition (X=o0%) provides the fundamental relationship for geometrical
parameter Y given by Equation (3). By expanding Equation (26) into a basic
complex form, the following equation for the structure loss factor is

obtained [ Ref. 5] :

n= BXY 27)

1+X(Y+2)+ (1+8°)X% (Y+1)
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where the loss factor B of the viscoelastic damping material defined by
Equation (2) is in general a function of frequency and temperature and the
geometrical parameter Y is defined generally by Equation (4) and more

explicitly by Equation (6).

The ratio d®/¥ from Equation (6) is independent of the viscoelastic
damping layer thickness HV and, therefore, is equal to doz/Yo , Where dg
and Y, are the distance between the neutral planes of the two elastic elements
and the geometrical parameter, respectively, for Hv= 0. Consequently, the
shear parameter X is given by [Ref. 5, 8]

G ’BV do®
X=— (28)
p HVYO(EI)O

where G’ is the storage modulus of the viscoelastic shear-damping material,

BV is the mean length of the viscoelastic damping layer in the cross-section
plane, (EI), is the static flexural rigidity of the structural composite correspond-
ing to the uncoupled condition (i.e., (EI)o= E;I, +EzIz), and p is the wave
number for flexural vibrations. The fiexural vibration wave number p is

given by
p=27/X (29)

where X is the wavelength of a flexural wave. Alternately, the wave number p
may be related to the circular frequency w and the cyclic frequency f as

2 _ w___ w
°% = wyGED. ~ "N GED, (30)

where w is the weight per unit length of the composite structure, g is the

follows

gravitational acceleration constant, and (EI)r is the effective flexural rigidity

of the structure for the resonant mode of vibration being considered.

The following are presentations of the basic assumptions made in the
development of the fundamental theory for the damping of two-elastic-element
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viscoelastic shear-damped structural composites undergoing flexural vibration

and typical structural composite designs for which the theory applies,

Basic assumptions of theory.- In the development of the fundamental

equations for complex flexural rigidity, loss factor, and shear parameter, the

following assumptions have been employed:

(1) The structural composite beam is comprised of two elastic elements
of arbitrary modulus and cross-section area between which is

constrained a viscoelastic shear-damping layer.
(2) The mode shape of the vibrating beam is sinusoidal,
(3) The effects imposed by boundary constraints are negligible.
(4) Shear and torsional distortions of the elastic elements are neglected.

(5) The cross-section dimensions of the elastic and viscoelastic elements

remain unchanged during vibration.
(6) Contact without slippage is maintained at all interfaces.

(7) Linear stress-strain relations apply for the viscoelastic and elastic

materials employed in the structural composite.
(8) Axial inertial forces are negligible.
(9) The elastic elements have zero extensional and shear loss factors.

(10) The elastic elements are considerably stiffer in extension than the

viscoelastic material,

(11) The viscoelastic layer is thin compared to the thickness of the

elastic elements,

(12) The viscoelastic layer is of approximately constant thickness

throughout the structural composite,

Additional assumptions are delineated in the development of design equations
and graphs for predicting the structure loss factor of two-elastic-element

viscoelastic shear-damped structural composites.

Typical structural composite designs.~ Cross-section configurations

of typical two-elastic-element structural composite designs are presented in
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Figure 3.1. Included are laminated (a) solid sheets, (b) honeycomb sheets,
(c) solid and honeycomb sheets, (d) T-section, (e) channel section, and

(f) angle section designs. The composite angle section design shown in
Figure 3.1 (f) actually is comprised of three elastic elements. However, for
vibrations about the neutral axis which is at 45 degrees to and intersecting
the sides of the angle, each of the two rectangular elastic elements of
modulus E; may be considered as representing one-half the stiffness of a
single effective elastic element because of the physical orientation and
identical flexural bending properties of the elements, Hence, the angle
section design can be considered as a two-elastic-element structuratl
composite.

Specification of the moduli E; and E; of the two elastic elements
and the cross-section dimensional characteristics of the two elastic elements
allows relevant geometrical properties to be calculated by use of the design
data previously presented for these cross-section configurations. Specifically,
data in the form of design equations and graphs for the geometrical properties
of two-elastic-element structural composites are presented in Section 2 of
this report as follows: laminated solid sheets, Figure 2.11 (4, B); laminated
honeycomb sheets, Figure 2.13 (A, B); single-constrained honeycomb sheet,
Figure 2.12(, B); and laminated T-section, channel and angle sections,
Figure 2. 17 (A-D). In the following discussion of design equations, graphs
and procedures, it shall be assumed that the geometrical parameter Y, the
static flexural rigidity (EI), , the weight per unit length w, the distance
between the neutral planes of the two elastic elements d, and the mean
length of the viscoelastic damping layer in the cross-section plane Bv have
been determined by direct calculation or by use of the graphical design aids
provided in Section 2 of the report.

Development of Design Equations and Graphs

If the wavelength of the flexural vibration wave A is known, the wave
number p is simply determined by Equation (29). However, the structural
designer is frequently interested in predicting the variation of the structure

loss factor 7m as a function of the frequency of vibration f= w/2m so that
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the degree of damping at the various structural resonances can be established.
Hence, Equation (30) is the appropriate equation to be employed nt\o determine
the wave number. This requires the evaluation of the effective flexural
rigidity (EI)r for which no precise definition exists. Based on analyses of
the dynamic stiffness characteristics of a lumped parameter model representa-
tion of viscoelastic shear-damped structural composites [Ref. 7] and
subsequent experimental confirmation of the design procedures developed,
there appears to be considerable justification for assuming that the effective

*
flexural rigidity (EI)r is the real part of the complex flexural rigidity (EI) .

Coupling parameter Z. - By use of Equation (26) and assuming that the
effective flexural rigidity (EI)r is the real part of the complex flexural

*
rigidity (EI) , the following relationship for effective flexural rigidity is

obtained
(EI)r = (EDo (1+2Y) (31)
where the coupling parameter Z given by

g L+ 1/X)+B® (32)
(1+ VX)%+ B°

is shown graphically in Figure 3.2 for parametric variations of the shear
parameter X and the damping material loss factor B. It should be recognized
that, since the shear parameter X and the loss factor § depend on frequency

in general, the coupling parameter Z is also frequency dependent.

As indicated by Equations (31) and (32) and Figure 3.2, the value of
the coupling parameter Z defines the degree of dynamic coupling between
the two-elastic elements of the structural composite. For values of the
coupling parameter Z approaching zero (low values of X), the effective
flexural rigidity (EI)r essentially equals the static or uncoupled flexural
rigidity (EI)o . For values of the coupling parameter Z approaching one (high
values of X), the effective flexural rigidity (EI)r essentially equals the
coupled flexural rigidity (El)ew = (EI) {Y+1). Values of the effective flexural
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rigidity (EI)r range between (EI)o and (EI), for intermediate values of the
shear parameter X, with higher values of the loss factor B causing the degree

of dynamic coupling to be increased.

Resonant frequency ratio fr/fo. - Assuming that the resonant fre-

quencies of the composite structural beam or plate are the same as a solid
beam or plate having the same static loading and a flexural rigidity equal to
(EI)r . the standard natural frequency equations available in the technical lit-
erature [Ref, 9, 10]can be employed for resonant frequency prediction purposes
with the value of (EI)r given by Equation (31). It is convenient to employ the
uncoupled resonant frequency fo’ which is determined by the beam or plate
natural frequency equation in terms of the static flexural rigidity (EI), , as a
reference frequency for purposes of developing a dimensionless resonant
frequency ratio. For flexural vibrations of beams and plates, the natural
frequency varies as the square root of the flexural rigidity, where the constant
of proportionality is a function of the mode of vibration, size, and static
loading conditions. Consequently, for a given mode of vibration with the
assumption that the same constant of proportionality applies for solid and
damped beams and plates having comparable size, boundary, and static

loading conditions, the resonant frequency ratio fr/fo may be written

€D,

fr
T =Y ED, (33)

Using Equation (31), the resonant frequency ratio is given by

£
+ =‘/l+ZY (34)
()

which is shown graphically in Figure 3. 3 for parametric variations of the
geometrical parameter Y and the coupling parameter Z. Since the coupling
parameter Z is frequency dependent and solutions being developed for
structure loss factor are applicable only for resonant conditions, the value of
the coupling parameter Z is a function of the resonant frequency fr ;

’
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consequently, the determination of the resonant frequency ratio by use of

Equation (34) requires an iterative process.

Referring to Equation (34) and Figure 3.3, the coupling parameter 2Z
determines (for a specified value of geometrical parameter Y) the ratio of the
resonant frequency fr to the uncoupled natural frequency fO for a given mode
of vibration. For low values of Z and all values of Y, there is little dynamic
coupling and the resonant frequency fr is essentially the uncoupled natural
frequency fo' For values of Z approaching one, the resonant frequency fr
approaches a value \/?ﬁ fo for all values of Y. Defining the coupled

natural frequency f_ as follows

fo =\,Y+l fo (35)

the geometrical parameter Y can be written
fco
Y= (-f—)—l (36)

which represents an additional alternate form of the relationship for geometrical
parameter given by Equation (4). It is concluded that, for each flexural mode
of vibration, the appropriate uncoupled natural frequency fo and coupled
natural frequency f_ represent lower and upper bounds on the structural

composite resonant frequency fr .

Shear parameter X.- By substituting Equations (30), (31), and (34)

into Equation (28), the following form of the equation for the shear parameter X

G’y /£
x=o(+)(£) o7
o)
where the shear parameter coefficient C given by

V9 B, do”
C= 5— (38)

2
T H, Youlv EI)o

is independent of frequency and readily evaluated for a specified structural

is developed:

composite cross-section design configuration by use of the design data
for geometrical properties presented in Section 2 of the report.
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The shear parameter X is a complicated function of frequency. In
addition to its direct dependence on the reciprocal of frequency, there is an
indirect dependence on frequency since the viscoelastic material storage
modulus G’ is generally a function of frequency, and determination of the
resonant frequency ratio fr/fo requires an iterative process with frequency

as the iteration variable.

Generalized shear parameter equation. - Since the structure loss

factor m and the resonant frequency ratio fr/fo are mathematically
continuous functions of frequency through their dependence on the shear
parameter X and the viscoelastic damping material loss factor B8, it is
desirable to combine the previously defined frequency-dependent parameters
to arrive at an equation for shear parameter which does not require an
iteration process for its solution. By substitution of Equations (32) and (34)
into Equation (37), the following fourth-order equation with the shear parameter X
as the variable is obtained:

2 .2 12

(1+B°%)x*+2X %+ [1—02(—?—) (Y+1)(1+ /32)] xe—ce(cf;—) Y+ z)x—cz(%—) =0 (39

Solution of this equation for the single positive real root provides a value of
the shear parameter for each value of frequency selected. Obviously, it is
necessary that dynamic elastic data for the viscoelastic damping material be
available so that the appropriate values of the storage modulus G’ and the

loss factor B may be inserted in the generalized shear parameter equation,

Optimum shear parameter Xop' - Inspection of the relationship for

structure loss factor n given by Equation (27) reveals that an optimization

of design parameters is required to maximize the degree of structural damping.
For values of the shear parameter X equal to zero or infinity, the structure
loss factor 7 is zero. For intermediate values of X, the structure loss
factor 1 is finite and achieves a maximum value when a specific relationship
exists between the shear parameter X, the loss factor 8, and the geometrical
parameter Y. Based on the procedure of establishing the geometrical
parameter Y and selecting a viscoelastic damping material having specified

storage modulus G’ and loss factor B characteristics, the value of the
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optimum shear parameter Xop may be determined by evaluating d7n/dX = 0 to
obtain [Ref. 6]

- 1 : (40)

X
0 Ju+1)a+p)

which is shown graphically in Figure 3. 4 for parametric variations of the

geometrical parameter Y and viscoelastic material loss factor B8. The value
of the optimum shear parameter varies between zero and one. For the most
common designs having values of the geometrical parameter Y between 0.5

and 5, the value of the optimum shear parameter ranges from 0.2 to 0. 8.

Maximum structure loss factor Max The value of the maximum

structure loss factor n which results when the shear parameter achieves

max
its optimum value is determined by substitution of the relation for Xop given
by Equation (40) into the general structure loss factor relationship given by

Equation (27) to obtain [ Ref. 6]

N = Y
max Y+2+2\/(Y+1)(1+ﬁ2)

(41)

which is shown graphically in Figure 3.5 for parametric variations of the
geomeirical parameter Y and the viscoelastic material loss factor 8. This
design graph clearly demonstrates the desirability of selecting a viscoelastic
damping material having a relatively large loss factor B over the frequency
and temperature ranges of interest. The curve for B=00 is an upper-bound
curve for the maximum structure loss factor based on the use of a pure viscous

shear-damping mechanism.

Loss factor ratio 1/n max -~ Ihe structure loss factor for non-

optimum damping conditions can be evaluated in terms of the loss factor

ratio 7m /nmax
employing the definition of the optimum shear parameter Xop given by

obtained by dividing Equation (27) by Equation (41) and

Equation (40), to obtain

_ [2+ W+ z)xop] (X/xop)
max g4 [(Y+ 2) Xop] (X/Xo;>+ (X/XOp z

n/n @2)
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which is shown graphically in Figure 3.6 for parametric variations of the shear
parameter ratio "X/Xop and the parameter (Y+2)Xop. Consequently, for a
value of the shear parameter X other than optimum, Equation (42) or

Figure 3.6 can be employed to determine the fraction of maximum loss factor
which will be obtained at each frequency for which the value of X has been
determined. This design graph indicates that, for practical values of the
geometrical parameter Y and optimum shear parameter Xop , the structure
loss factor 7 is within 15 per cent of the maximum structure loss factor M nax
when the shear parameter is one-half or twice its optimum value. Even when
the shear parameter is less than four times and greater than one-fourth its
optimum value, the structure loss factor 7 is greater than one-half its
maximum value. The noncritical nature of the shear parameter optimization

is of considerable practical significance because of the flexibility it
introduces into the design process with regard to eliminating the necessity of

exactness in designing for optimum conditions.

Optimum frequency parameter Qop’ - When the structure loss factor 7

is displayed graphically as a function of frequency on log-log coordinates, the
curve is approximately symmetrical about the frequency at which the loss
factor is a maximum, In certain cases, it may be desirable to optimize the
design of a structural composite at the logarithmic midpoint of the frequency
range of interest. For the optimum value of the shear parameter, the resonant

frequency ratio fr/fo defined by Equation (34) becomes

f

O =
—Efo ‘/ 1+ZopY (43)

where the optimum coupling parameter Zop is given by Equation (32) with X
replaced by Xop‘ From Equations (37) and (43), the optimum structure

resonant frequency fop is given by

=CG'Q (44)
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where the optimum frequency parameter Qop defined as

—MZOY (@5)

Q'op = Xop
is shown graphically in Figure 3.7 for parametric variations of the
geometrical parameter Y and the viscoelastic material loss factor B. Since
the viscoelastic material storage modulus G ’ and the optimum frequency
parameter Qo are both frequency dependent, determination of the optimum
resonant frequency through an iteration process using Equation (44) is

considerably aided by the graphical presentation of Qop in Figure 3.7.

The thickness of the viscoelastic damping layer HV required for
the structure loss factor n to achieve a maximum value may be determined

from Equations (38) and (44) as follows

(Bv)op = Co (cg_l)op (%s) (48

7
where the ratio (fg)op is determined at the frequency fop , the optimum
frequency parameter Qop is given by Equation (45) and Figure 3.7, and the
damping layer thickness coefficient G, is given by
/G Bdo

27 YoJW (EI)Q

Co= 47)
which is equal to the product of the viscoelastic damping layer thickness HV

and the shear parameter coefficient C defined by Equation (38).

Manual Design Procedure

A manual design procedure for the prediction of the loss factor of two-
elastic-element viscoelastic shear-damped structural composites may be
formulated based on the use of the equations and graphs for design parameters
previously presented., Of particular interest to structural design engineers
is the variation of the structure loss factor 1 with frequency. This information

provides a rapid means of establishing the degree of damping for the various
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structural resonances of interest. The following procedure is based on the
assumption that a particular viscoelastic material is employed for which the
ratio (G '/f) and the loss factor B are known as a function of frequency for

the temperature of interest;:

(1) For the cross-section and structural material properties of the
structural composite, determine the value of the geometrical parameter Y,
the static flexural rigidity (EI)o , the weight per unit length w, the distance
between the two neutral planes d, and the length of viscoelastic damping
layer BV in the cross-section plane. The design equations and graphs

presented in Section 2 of this report can be used for this purpose.

(2) Calculate the value of the shear parameter coefficient C

expressed by Equation (38).

(3) From data for the dynamic elastic characteristics of the visco-
elastic damping material, determine the values of the ratio (G '/f) and the
loss factor B for a number of frequencies which span the frequency range of

interest.

(4) Calculate the resonant frequency ratio fr/fo and the shear
parameter X for each frequency selected, A different value of fr/fO will
exist in general for each frequency selected since the dynamic coupling
between the two elastic elements comprising the structural composite (as
determined by the coupling parameter Z) is a function of frequency. As
an initial estimate, assume Z= 0 and, therefore, fr/fo= 1; hence, from
Equation (37), the initial estimate of the shear parameter X for each frequency
selected for analysis is X, = C(G '/f). By entering Figure 3.2 with this value
of X and using the appropriate value of B for each frequency, a revised
estimate of the value of the coupling parameter Z = Z; 1is obtained. With
this revised value of Z and the value of the geometrical parameter Y
previously calculated, Figure 3. 3 is used to determine the resonant frequency
ratio (fr/fo)l . This value of the resonant frequency ratio is used to
calculate the first frequency-dependent estimate of the shear parameter
X, = C(G /%) (fr/fo)l. This new value of the shear parameter X is used to
obtain a revised estimate of the coupling parameter Zz and resonant
frequency ratio (fr/fo)z to provide a second estimate of the shear parameter X,.
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This iteration process is repeated until the value of the shear parameter X so
determined does not change with a new iteration cycle to within the desired

degree of accuracy. In general, three iterations should suffice in determining
the value of the shear parameter X at each frequency selected., To determine
the uncoupled natural frequency fO corresponding to each frequency selected,

divide each frequency by its corresponding frequency ratio fr/fo'

(5) Using the value of the geometrical parameter Y and the values of
the shear parameter X and the loss factor B for each frequency selected for
analysis, the structure loss factor 7 is calculated by use of Equation (27).
Alternately, the structure loss factor 7 can be determined with the aid of the
design graphs presented in Figures 3.4-3.6. Using Figure 3,4, the optimum
shear parameter Xop is determined for the value of B which applies for each
frequency; hence, the value of the shear parameter ratio X/Xop can be
tabulated., Figure 3.5 is employed to obtain the maximum value of the struc-
ture loss factor ax which would occur if X= Xop' For each value of the
ratio X/XOp previously determined, Figure 3,6 is used to obtain the value of
the loss factor ratio n/nmax which, in turn, is multiplied by 7___ to obtain

the value of the structure loss factor 7 at each frequency selected for analysis.

(6) The frequency at which the maximum structure loss factor given by
Figure 3.5 will occur can be calculated by determining the value of the optimum
frequency parameter Qop from Figure 3.7. This determines the value of the
ratio (G '/f)op = l/CQop which is located on the graph of (G ‘/f) versus fre-
quency for the viscoelastic material being employed to provide the value of the
optimum resonant frequency fop' This procedure may require an iteration
process since, in general, the loss factor B is dependent upon frequency.
For the particular structural composite design being evaluated, the optimum
resonant frequency fop may be far removed from the frequency range of
interest and, consequently, would be of academic interest only, as it adds
little to the understanding of the damping performance of the structural

composite,

This manual design procedure will result in a tabulation of values of structure
loss factor 1 and uncoupled natural frequencies fo for each frequency used

in the iteration process, Since 7 and fO are mathematically continuous
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functions of frequency, curves can be passed through the discrete calculated
data points to obtain continuous functions of frequency f= fr versus the
uncoupled natural frequency fo' and structure loss factor 71 versus

frequency f= fr'

It may be desired to obtain the maximum value of structure loss

factor 7 at a specific frequency. The optimum design procedure for this

max
requirement is as follows:
(1) For the specified frequency f= fop’ determine the values of the

viscoelastic material storage modulus G’ and loss factor 8.

(2) With this value of B and an initial assumption that Y=Y, ,
Figure 3.7 is used to determine the initial estimate of the optimum frequency

parameter £ .
op

(3) Calculate the value of the damping layer thickness coefficient Cg,

using Equation (47).

(4) Using the values of Co, G’ and Qop determined, calculate the
initial estimate of the optimum damping layer thickness (Hv)op using
Equation (46).

(5) For greater accuracy in determining (H_) , the initial estimate

of its value can be used to determine a more accuravt:%stimate of the geomet-
rical parameter Y by use of Equations (14) and (15). This new value of Y
is then used to recalculate the value of the optimum frequency parameter Qop
and the optimum damping layer thickness (Hv)op' Generally, one iteration

is sufficient because of the weak dependence of the geometrical parameter on

the viscoelastic damping layer thickness,

(6) Using the value of the optimum viscoelastic damping layer
thickness (HV)Op determined, the value of the shear parameter coefficient
C= CO/HV is calculated and a prediction of the resonant frequency versus
the uncoupled natural frequency and the structure loss factor versus the

resonant frequency is made following the general procedure previously outlined.

Use of the optimum design procedure allows maximum damping to be attained

in the region of a specific structural resonance at which excessive vibration
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excitation is anticipated and a very high degree of vibration reduction is

required. However, it is possible that the value of ( for a particular

I-Iv)op
structural composite design is impractical from a fabrication point of view or
does not satisfy the analytical requirement that HV be small compared to the
thickness of the elastic elements comprising the structural composite. This
may preclude design optimization at the desired frequency; however, determina-
tion of (Hv)op provides an indication of how close a practical non-optimum
design can be to the optimum design, Therefore, within the practical limita-
tions of fabrication and performance prediction capabilities, the possibility
exists to tailor viscoelastic shear-damped structural composite designs to

maximize damping at particularly troublesome frequencies.

Automated Design Procedure

The necessity for using a manual iteration process to predict the
structure loss factor versus frequency characteristics of two-elastic-element
viscoelastic shear-damped structural composites can be eliminated by
programming the generalized shear parameter relation given by Equation (39) on
a digital computer to determine the single positive real root of the equation for
each frequency selected, which gives the values of the shear parameter X
required, Alternately, the manual design procedure can be programmed, which
involves using Equations (32), (34) and (37) in an automated iteration process
to determine the shear parameter X for each frequency selected, The second
method has been found to be the more rapid one. The value of the shear
parameter coefficient C is determined by use of Equation (38) and, for each
frequency f specified, the values of the storage modulus G " and Loss
factor B are obtained from the dynamic elastic data for the viscoelastic
damping material employed. The values of shear parameter X determined by
one of the methods described above for each frequency may be stored in the
computer for subsequent insertion into the relation for structure loss factor n
given by Equation (27). Also, the values of the shear parameter X, along with
values of C, (G /f), and the frequency f = fr’ can be inserted into Equation (37)
to obtain values of the uncoupled natural frequency fo corresponding to each

frequency.
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A curve passed through the discrete data points provides continuous
functions of frequency f= fr versus the uncoupled natural frequency fo’ and
structure loss factor 7n versus frequency = fr' Since inaccuracies associated
with graphical solutions and approximations resulting from iteration processes
are avoided, the automated design procedure provides a more accurate
prediction of the damping and frequency characteristics than the manual
design procedure previously outlined, Perhaps more important is the fact
that the automated design procedure provides a more rapid means of calculating

the damping and frequency characteristics.

In a similar manner, a digital program can be written to perform the
iteration required (as outlined in the manual design procedure) to determine
the optimum viscoelastic damping layer thickness (Hv)op required to obtain

the maximum value of structure loss factor 7 at a specific frequency.

With each cycle of iteration, a more accuraterrelaas?imate of the geometrical
parameter Y is obtained which provides greater accuracy in the prediction

of (Hv)op. The iteration process can be continued until values of (Hv)op are
determined to within a specified degree of accuracy. Having determined the
value of (Hv)op' the automated design procedure previously described may be
employed to predict the structure loss factor versus frequency and uncoupled

natural frequency characteristics,

Temperature Effects

The effect that temperature has on the viscoelastic damping material
loss factor B and the storage modulus G’ is much the same as that of
frequency except that increasing temperature corresponds to decreasing
frequency and decreasing temperature corresponds to increasing frequency.
For very high environmental temperatures, the damping material operates in
its "rubbery" region, and since little energy is dissipated, the structure loss
factor is small. For very low environmental temperatures, the damping
material operates in its "glassy" region, and again since little energy is
dissipated, the structure loss factor is small. In the design procedures
previously outlined, the temperature was considered constant, To cover a

temperature range of interest, loss factor versus frequency curves can be
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made for various temperatures throughout the temperature range of interest.
Of course, it is also possible to construct loss factor versus temperature
curves for various frequencies of interest, These curves will have shapes
similar to the loss factor versus frequency curves and, in fact, the frequency
and temperature dependance of the viscoelastic properties of high polymer

damping materials are interrelated by physical laws [Ref, 11, 12].
Other Design Considerations

By applying the viscoelastic damping techniques described, structural
composites having large loss factors can be constructed. However, there are
other design considerations that are frequently as important.as thé energy
dissipation capability of the structure. The following are discussions _of
the static stiffness, weight and static load distribution characteristics of

viscoelastic shear-damped structural composites,

Static stiffness. - When compared on the basis of equal weight, the

static stiffness of a viscoelastic shear damped structural composite is less
than that of a conventional structural member. Consequently, if a conventional
structural member having a relatively low loss factor is to be replaced by a
viscoelastic shear-damped structural composite of equal weight, a reduction

in static stiffness of the structural member can be expected, However, due

to the coupling between the individual elastic elements of the structural
composite, as determined by the coupling parameter Z, the dynamic stiffness

of the structural composite will always be greater than its static stiffness,

The variation of the static stiffness K, of a viscoelastic shear-damped
structural composite with the value of the geometrical parameter Yo is shown

graphically in Figure 3.8, and is given by [Ref. 8]

Ko 1 (48)
K Yo+l

where K_ is the stiffness of the structure when the individual elastic elements

of the structural composite are completely coupled. It is assumed that the
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viscoelastic damping material is soft compared to the stiffness of the struc-
tural materials employed in the structural composite and, therefore, the static
stiffness of the structure is determined by the static flexural rigidity (EI), .
Since the stiffness K_ represents the stiffness of the structural member

prior to adapting its cross-section to accommodate a viscoelastic shear-
damping mechanism, Figure 3. 8 provides a comparison between the static
stiffness properties of conventional and viscoelastic shear-damped structural

members having the same weight.

A substantial decrease in the static stiffness of the structure results
even for relatively low values of the geometrical parameter Y,. The static
stiffness of the viscoelastic shear-damped structural composite is one-half
that of the equal-weight conventional structural member when the geometrical
parameter Yo = 1, For values of the geometrical parameter Yo = 2 and
Y, = 3, the static stiffness is one-third and one-fourth that of the conventional
structural member, respectively. The geometrical parameter Y should have
a high value to obtain a large structure loss factor 1 and a low value to
maintain & relatively high static stiffness K, for a specified weight of
structure; therefore, selection of the value of the geometrical parameter should
be based on the relative importance of damping and static stiffness as design

requirements.

Weight, - When compared on the basis of equal static stiffness, the
weight of a viscoelastic shear-damped structural composite is greater than
that of a conventional structural member, Consequently, if a conventional
structural member is to be replaced by a viscoelastic shear-damped structural
composite of equal static stiffness, an increase in weight can be expected,
In general, there is no direct relationship between weight and the geomet-
rical parameter Y, However, for a composite structural beam or plate
comprised of a lamination of two solid sheets of the same material, the

following relation can be developed

d 3
W= Yo+l (49)
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w here Wd is the weight of a viscoelastic shear-damped structural composite
and Ws is the weight of a solid plate of the same material having a stiffness
equal to the static stiffness of the damped plate. This relation is shown

graphically in Figure 3, 9.

For a value of the geometrical parameter Y, = 1, there is a 26 per cent
increase in weight, The rate of increase in weight drops off as Y, increases
so that for Y,= 3 (sandwich beams), the weight increase is 59 per cent and
does not become 100 per cent until a value of Yo = 7 is reached, Here again,
the geometrical parameter Y should have a high value to obtain a large
structure loss factor 7m and a low value to maintain a relatively light structure
weight Wd for a specified static stiffness, Consequently, structure weight,

stiffness and damping must be considered as joint design criteria.

Static load distribution, - The static load distribution specifies the

fraction of the total statically applied load which is carried by each of the
elastic structural elements comprising the structural composite and, therefore,
is useful in performing stress analyses for static loading., Each elastic
element in the viscoelastic shear-damped structural composite undergoes

the same transverse deflection under bending; therefore, the load carried by

each elastic element is in proportion to its flexural rigidity, as follows

- A (50)

where P.l is the load carried by an elastic element, EiIi is the flexural
rigidity of that elastic element, P 1is the total applied static load, and

(EI); is the static flexural rigidity of the structural composite., For example,
the relations for static load distribution for a composite structural beam or plate

comprised of a lamination of two solid sheets of arbitrary material given by

3
1 _ _MR®* | 2 _ 1 (51)

P " P MR%+1

MR®+1

are presented graphically in Figure 3.10 for parametric variations of the
modulus ratio M = E; /E; and the thickness ratio R= H; /H;.
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SECTION 4: EXPERIMENTAL VERIFICATION OF DESIGN
PROCEDURE FOR TWO-ELASTIC-ELEMENT STRUCTURAL COMPOSITES

This section of the report presents a comparison of the theoretical
predictions and experimental measurements of the structure loss factor of
two-elastic-element viscoelastic shear-damped structural composite beams,
Cross-sections of the experimental structural specimens, which included
laminated beams comprised of solid sheets, solid and honeycomb sheets,
honeycomb sheets, and channel sections, are presented in Figure 4,1. The
structural composites were fabricated from various combinations of structural
materials including aluminum, steel, and fibre-glass. The thickness of the
viscoelastic damping layer I—IV was maintained reasonably constant during
the experiments which were performed at temperatures ranging between 75°
and 90°F.

The following are discussions of the prediction and measurement
technigques for the structure loss factor, followed by a comparison of the
theoretical and experimental values for beam specimens having designs

indicated in Figure 4.1,
Design Procedure Application Example

The design procedures presented in Section 3 of this report have been
used to predict the loss factor versus frequency characteristics of 27 different
beam specimens, As an example of the application of the manual and
automated design procedure, the numerical details of one of the beam designs

will be delineated,

Consider a structural composite cross-section comprised of two solid
rectangular sheets laminated with a thin layer of viscoelastic damping material,
as shown in Figure 4, 1(a). The modulus, weight density, and dimension

characteristics are as follows:
() E, = Ez = 10.3 x 10° psi; ¥ = %= 0.098 1b. /in.®

(B) H,= 0.0628 in,; Hz = 0,0629 in,
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(C) HV = 0, 0055 in.
(D) B= 3.0 in.

From these characteristics, the following modulus and dimension ratios are

calculated:
A) M=E/Ez=1.0
(B) R=Hy/Hz =~1.0
(C) V=H_/(H; +Hz) = 0.0435

The following represents the calculations performed in accordance with the
various steps in the manual design procedure outlined in Section 3 of the
report:

(1) Using the modulus and dimension data determined and the design
information presented in Figures 2.11(3) and (B), the following geometrical

properties are calculated:
@A) Yo=3.0;Y/Yo=1.18; Y= 3.54
(B) (ED)o= 1,287.5 lb, - in.?
(C) w= 0.037 1lb. /in.
(D) d= 0,068 in.; do = 0,0625 in,

(E) BV= 3.0 in,

(2) The value of the shear parameter coefficient C 1is calculated

using Equation (38) to obtain C = 0.327.

(3) The value of the ratio (G ’/f) and loss factor B for a number of
frequencies which span the frequency range of interest (10 to 1000 Hz) and
for the temperature of interest are determined from a graph of the dynamic
elastic characteristics of the viscoelastic material, such as that presented
in Figure 4. 2 for the viscoelastic damping material employed in the structural
composite (3M No. 466 adhesive transfer tape). The data for the viscoelastic
shear damping material presented in Figure 4.2 indicates that the loss factor 8
has a reasonably constant value over the frequency range of interest, whereas
the G’ and G//f characteristics vary as a power function of frequency.

Temperature variations in the neighbcrhood of room temperature have a minor
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effect on the value of the loss factor and a substantial effect on the G and

G /f characteristics. This graph clearly demonstrates the significant effect
which temperature may have on the dynamic elastic characteristics of visco-
elastic damping materials and consequently on the loss factor characteristics
of a structural composite incorporating the material in a shear-damping
mechanism. For the discrete frequencies selected for analysis, which are
indicated in the design example data chart presented in Figure 4. 3, and a
specified temperature of 75°F, a relatively constant value of B8 = 1.4 and the
values of G /f indicated in Figure 4.3, are obtained from Figure 4. 2,

(4) The resonant frequency ratio fr/fo and the shear parameter X
for each discrete frequency is determined by an iteration process using
Figures 3.2 and 3.3. As an initial estimate for each frequency, choose the
values Z= 0 and hence, fr/fo= 1. For example, for f= 10 Hz,
Xo= C(G/f) = 1.52. Enter Figure 3.2 with B= 1.4 and X= 1.52 to obtain
a value Z; = 0.77. Enter Figure 3.3 with Z= 0,77 and Y= 3.54 to obtain
a revised estimate of the resonant frequency ratio (fr/fo)l = 1,95; this
value is used in Equation (37) to calculate X; = 2,96, With this new value
of the shear parameter, values of Z; = 0.88 and (fr/fo)z = 2,03 are obtained
from Figures 3.2 and 3. 3, respectively, which give a value X3 = 3.08 using
Equation (37)., An additional iteration cycle results in Z3 = (., 88 indicating
that further iterations are not required for the degree of accuracy associated
with reading the design graphs., Hence, values of fr/fo =2,03and X= 3.08
are inserted in the chart of Figure 4. 3 for a frequency of 10 Hz. Since the
discrete frequency f= 10 Hz actually represents a possible resonant fre-
quency of the structural composite beam, the value of the uncoupled natural
frequency is obtained by dividing the selected frequency f= fr by the
resonant frequency ratio fr/fo to obtain a value of fo = 4,93 Hz,

(5) For values of B =1,4 and Y= 3.54, Figures 3.4 and 3.5 indicate
that Xop= 0.27 and Mmax = 0. 385, respectively. Calculating X/xop= 11. 4,
Figure 3.6 with (Y+2)Xop= 1.5 indicates that #/7__ = 0.28. Hence, the

structure loss factor = 0.108. This procedure is repeated for each frequency

selected for analysis in the frequency range of interest, and the results are
recorded in the chart of Figure 4, 3. A curve is passed through discrete data
points to develop the continuous functions for loss factor 7 versus frequency
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and resonant frequency fr versus uncoupled natural frequency fo presented
graphically in Figure 4. 4. In this example, the viscoelastic damping material
loss factor B was considered essentially independent of frequency so that
the optimum shear parameter Xop and the maximum structure loss factor M max
were also independent of frequency. In general, however, B and hence

X and - will vary with frequency.

op ax
The automated design procedure outlined in Section 3 of the report

may be applied by introducing into the digital computer program the values

of the geometrical parameter Y = 3..54, shear parameter coefficient C = 0, 327,

loss factor 8= 1.4, and appropriate values of the ratio G’/f for each

frequency selected for analysis. The output from the computer is presented

in the chart below. The difference in the value of 1 and fo shown in

DIGITAL COMPUTER OUTPUT FOR DESIGN EXAMPLE
G/t B X fo n £
4650060 14069 3eB804 451610 belbaey 1y
340000 148000 220966 1903142 Wel13894 2u
2.850000 1 «46086 176965 1530129 Uelb44p 39
220000 140000 136554 2619738 Ge20U105 o9
156696 1 «40000 113029 3755200 022944 10
1 .60602 1 «40800 V94514 5581309 G .2564% 108
1.200809 1 42000 B.66996 11678366 B «306936 209
1086060 140000 053348 186332575 bes4avle 306
0 .75200 1 «400060 b «3bb32 32740796 ©+37205 500
V67100 140000 B.31978 47883544 Y e 3B26Db 120
Q56500 140000 De25635 T16+51302 Ye38506 lvvo

Figure 4,3 and in the chart of the digital computer output indicate the degree

of accuracy that can be expected using the manual design procedure.

For this

particular structural composite design, a comparison of the predicted and

experimentally determined values of the structure loss factor 7 is presented

in Figure 4.6(C).

The difference between the theoretical prediction and the

experimental measurements indicated by Figure 4, 6 (C) is considered typical

of that which can generally be expected,
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For a free-free beam of length L, the natural frequency equation is
given by LRef, 9]

@, J(J— (EDo

2nL* w

(o), = (s52)

where o = 22.4, 61.7, 121 and 200 for the first four modes of vibration.
Using this equation and the values of (EI) and w given above for a beam
length L= 30 inches, the values of the uncoupled natural frequency fo for
the first four modes of vibration are 14,6, 40, 78.5 and 130 Hz, respectively.
By use of the graphical presentation of the resonant frequency fr versus the
uncoupled natural frequency fo shown in Figure 4,4(a), the resonant frequency
for the first four modes of vibration are determined and presented in the chart

below. For purposes of comparison, the experimentally determined resonant

Mode Theoretical fr(Hz) Experimental fr(Hz)
1 28 24
2 74 61
3 140 127
4 220 175

frequencies for the first four modes of vibration of the free-free beams are
also presented, The agreement is reasonably good in view of the fact that the
accelerometer and counter weight placed on the beam, as shown in Figure 4, 5,
would cause a reduction in the experimental resonant frequency because of the
additional mass loading,

The automated design procedure was employed to predict the structure
loss factor as a function of frequency for 27 different two-elastic-element
structural composite beam specimens in a manner similar to that outlined in the
design example, A discussion of the method employed to experimentally
determine the structure loss factor versus frequency follows,
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Measurement of Structure Loss Factor

The decay rate method was selected to measure the loss factor of the
viscoelastic shear-damped beam specimens since the measurements can be
made with considerable speed and the method is generally accepted by
researchers in the field of structural damping (Ref. 13-15 ], Repeated meas~
urements of vibration decay can be made on a structural member under the
same conditions in rapid sequence thereby providing an accurate measurement
of damping through averaging of data, If the rate of decay is measured in

terms of the reverberation time Tgg , the structure loss factor 7n is given by

2,2 2.2T
r

n= = (53)
£ T50  Tso

where T60 is the time required for the amplitude of free vibration to be
attenuated by 60 db (corresponding to a factor of 1000), fr is the resonant
frequency of the decaying vibration for the particular mode of vibration being
evaluated, and Tr = l/fr is the period of the vibration at each particular
resonance.

The experimental system for measuring the loss factor of the visco-
elastic shear-damped beam specimens is shown in Figure 4, 5; the instrumenta-

tion for the experimental system is identified in the chart presented below,

INSTRUMENTATION FOR MEASUREMENT OF STRUCTURE LOSS FACTOR
Instrumentation Manufacturer Model Number

Electrodynamic Exciter
(Magneti¢ Housing and Acoustic Research, Inc, 12W-0808(modified)
Driver Coil) and 12W-0114
Accelerometer Endevco 2233
Cathode Follower Amplifier | Columbia Research Lab, 6003
High-Pass Filter Krohn-Hite 330-M
Decay Rate Meter Spencer~Kennedy Lab. 507
Power Amplifier Dynaco Mark III
Oscilloscope Tektronix 564,/2867/3A3
Harmonic Oscillator Hewlett-Packard 200CDR
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The structural specimen is supported vertically by a string suspension, A
small driver coil is cemented to the specimen in a manner which will add a
minimum amount of stiffness or weight and allow centering of the driver coil
within the magnetic housing of the electrodynamic exciter, which provides a
linear magnetic field for the driver coil, The electrodynamic exciter, which
is driven by the harmonic oscillator through a power amplifier, is capable of
delivering 25 watts of power to a beam specimen for an extended period of

time at a maximum linear peak-to-peak displacement of one half inch,

The response of the beam specimen is detected by the accelerometer
which is mounted near the end of the beam with a counter weight of equal
magnitude mounted on the opposite end of the beam for purposes of balance,
The high-pass filter is used to reject all frequencies less than the particular
resonant frequency at which the loss factor is being measured, The decay
rate meter provides electronic switching between two alternating functions:
(1) processing the signal from the high-pass filter through a logarithmic
amplifier, and (2) generating a calibrated logarithmic decay signal., The
oscilloscope provides alternate displays of the logarithmic decay signal
representing the beam vibration and the calibrated logarithmic decay
signal,

The experimental procedure for the measurement of structure loss
factor is as follows, The structural specimen is excited by harmonic vibra-
tion and, when a resonant frequency is located, allowed to attain a steady-
state vibration condition, The cut-off frequency of the high-pass filter is
set approximately at the resonant frequency. As part of the electronic
switching function performed by the decay rate meter, the excitation vibration
is abruptly removed from the structure and the ensuing vibration decay is
sensed by the accelerometer, The accelerometer signal is processed
through the cathode follower amplifier, high-pass filter and decay rate
meter, The decay rate meter processes the signal through a logarithmic
amplifier and generates a separate calibrated logarithmic decay signal, The
structure vibration decay signal and the calibrated decay signal are
alternately displayed on the oscilloscope on a repetitive basis thereby
allowing adjustment of the calibrated decay signal to match the vibration

59



decay signal. When the calibrated decay signal is adjusted to match the
structure vibration decay signal, the value of the reverberation time T60 is
read from the decay rate meter and the structure loss factor is calculated

from Equation (53).

Loss factor measurements are made at the various resonances of the
structure and, therefore, data is obtained at discrete frequencies. However,
a curve may be passed through the discrete loss factor data points to generate
a description of loss factor as a continuous function of frequency. The
connotation is that if the structure were to resonate at an intermediate
frequency, the continuous curve of loss factor versus frequency indicates

the loss factor which exists for that particular mode of vibration.

The filter in the experimental system places a limitation on the
maximum value of structure loss factor which can be measured accurately.
Because of its "ringing" characteristic, the filter itself exhibits a decay
rate characteristic and, hence, the experimental system may be employed
only to measure vibration decay rates which are less than that of the filter.
The active high-pass filter was selected because of its high rejection
rate (24 db/octave) below the cut-off frequency and its favorable ringing
characteristic. Based on the fact that the effective loss factor of the
filter was generally greater than 0.5 over the frequency range of interest
(10 Hz to 1000 Hz), data can confidently be obtained for structure loss
factor measurements as high as 0.4. Actually, even if the range of loss
factor measurement was not limited by the filter ringing characteristic,
there would be another limitation imposed by the physical difficulty encoun-
tered in interpreting the decay of a signal having a few cycles of oscillation,
which would be the case for values of loss factor greater than 0.4. It is
concluded that the experimental system is capable of measuring maximum
values of structure loss factor equal to 0.4 with a high degree of confidence;
however, a sharp decrease in confidence exists for measurements between

0.4 and 0.5.
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Theoretical and Experimental Structure Loss Factor Data

Theoretically predicted and experimentally determined values. of struc-
ture loss factor are shown graphically in Figures 4.6 to 4,10 for 27 different
viscoelastic shear-damped composite st;uctural beams having cross-sections
illustrated in Figure 4.1. The relevant modulus and dimension data are
presented with each graph as well as the value of the geometrical parameter Y,
Theoretical predictions are presented as a continuous curve and the results of

measurements are indicated by discrete data points,

Structure loss factor data for 12 composite structural beams comprised
of a lamination of two solid sheets are shown in Figure 4, 6 for the following
structural material combinations: (A)-(F) both solid sheets aluminum; (G)-(J)
one solid sheet steel and one solid sheet aluminum; (K), (L) one solid sheet
fibre-glass and one solid sheet aluminum, In addition to the different modulus
combinations, data are provided for a range of elastic element thickness ratios.
In general, the experimental values of structure loss factor are greater than the
theoretical values for the aluminum-aluminum combinations; the experimental
values are extremely close to the theoretical values for the steel-aluminum
combinations; finally, the experimental values are less than the theoretical

values for the fibre-glass-aluminum combinations,

Structure loss factor data for 8 composite structural beams comprised
of a lamination of a solid and a honeycomb sheet are shown in Figure 4.7 for
the following structural material combinations: (A)-(F) both solid and
honeycomb sheets aluminum; (G) solid sheet steel and honeycomb sheet
aluminum; (H) solid sheet fibre-glass and honeycomb sheet aluminum, For
the aluminum=-aluminum combinations, data are provided for a range of elastic
element thickness ratios, In general, the experimental values of structure
loss factor are less than the theoretical values for the aluminum-aluminum
and fibre-glass-aluminum combinations, whereas the experimental values are

greater than the theoretical values for the steel-aluminum combination,

Structure loss factor data for 3 composite structural beams comprised
of a lamination of aluminum honeycomb sheets having various combinations of
skin thicknesses are shown in Figure 4.8 (A-C). The experimental values of

structure loss factor are less than the theoretical values in all cases,
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Structure loss factor data for 3 composite structural beams comprised
of a lamination of an aluminum or steel solid sheet and an aluminum channel
section are shown in Figure 4,9, For the aluminum-aluminum combinations
represented in Figure 4, 9(A,B), the experimental values of structure loss
factor are equal to or greater than the theoretical values whereas, for the
steel-aluminum combination represented in Figure 4, 3(C), the experimental

values are equal to or less than the theoretical values.

Structure loss factor data for one composite structural beam comprised
of a back-to-back lamination of two aluminum channel sections is shown in
Figure 4,10, The experimental values of the structure loss factor are greater

than the theoretical values,

Sources of errors, - The difference between the predicted and measured

values of structure loss factor indicated in Figures 4,6 to 4,10 provide specific
guidelines for anticipated discrepancies between theory and measurement for
the various cross-section design configuration$, No general rule for correct-
ing theoretical predictions of loss factor for two-elastic-element structural
composites is immediately apparent, However, all experimental data for
structure loss factor consistently exhibits the same trend with frequency as
predicted by the theory. Furthermore, structural composite designs having
larger values of the geometrical parameter Y consistently exhibit higher

values of the structure loss factor.

An obvious source of error is the energy dissipation which is introduced
by damping mechanisms other than that involving the viscoelastic damping
material; these would include air, structural material, and specimen support
damping mechanisms, The theory assumes that the viscoelastic shear-damping
mechanism is the only one present, This assumption appears to be justified
since the degree of damping obtained from properly designed viscoelastic shear-
damping mechanisms is substantially greater than that available from other
damping mechanisms. Also, there will be errors due to the fact that a
particular structural composite will not, in general, satisfy all of the basic

assumptions enumerated on page 36,

The errors involved in experimentally determining the structure

loss factor m can be separated into two categories, The first category
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encompasses those errors involved with not having a beam with the
dimensions and physical properties that were assumed. In the second
category are those errors involved with not measuring the loss factor
exactly.

The errors in the first category can be divided into those involved
with the parameters Y, X, and B. The geometrical paramter Y is a straight-
forward calculation depending on the dimensions of the cross-section and the
modulus of elasticity of the structural material used., For most structural
materials, the modulus of elasticity can be (or has been) accurately determined,
One source of error in calculating Y is in not knowing the dimensions
exactly (e.g., honeycomb structures). Also, the effects of the core are
usually neglected when dealing with honeycomb structures., Another possible
source of error in determining Y is to read the design graphs incorrectly and/or

make mistakes in the mathematical calculations.,

The shear parameter X is a function of the width BV and thickness HV
of the viscoelastic damping layer, the distance between the neutral axis of
the two elastic elements d, the geometrical parameter Y, the static flexural
rigidity (EI)g , the weight per unit length of the beam w, the frequency of
vibration f, the viscoelastic material loss factor B, and the storage modulus
of the viscoelastic material G’ The width of viscoelastic damping layer BV
in most cases can be determined with good accuracy. The thickness HV p
however, is more difficult to determine accurately, with unfortunate
consequences, For a nominal thickness HV = 0,005 in,, an error in measure-
ment of 0,001 in, can cause a 20 per cent error in the shear parameter which,
in some cases, can cause a 20 per cent error in the structure loss factor, The
distance d can be determined with considerable accuracy, except in those
cases where it is very small; however, these cases are poor designs with
regard to structural damping. The problem of determining (EI)o is the same
as for Y. Since the density of materials generally is accurately determined,
the problem of determining w is the same as for Y., The frequency { is

assumed given and therefore does not represent a source of error,

There remains the loss factor B and the storage modulus G’ of the
viscoelastic damping material to consider, These quantities are not easily
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determined and they are quite variable, depending on many factors. Frequency
and temperature have the biggest effects on the values of B and G’; the
magnitude and history of the shear strain also may affect their values [Ref, 161

Statistical analysis of experimental data, - The experimentally

determined values of structure loss factor 7, are plotted versus their
theoretically predicted values N, in Figure 4,11, where the data point
symbols are identified in the chart below. A linear regression of Mg on 7

SYMBOLS FOR EXPERIMENTAL STRUCTURE LOSS FACTOR DATA
Configuration Symbol Structural Material Combination
Laminated ® (Ey) Aluminum (Ez) Aluminum
Beams O (E,) Steel (Eo) Aluminum

(4] (E,) Fibre-glass (Ez) Aluminum
Constrained [ | (E,) Aluminum (EH) Aluminum
Honeycomb 0 (E,) Steel (E;) Aluminum
none (E,) Fibre-glass (EH) Aluminum
Laminated
Honeycomb + (E,) Aluminum (Ez) Aluminum
Constrained A (E;) Aluminum (E2) Aluminum
Channel A (E,) Steel (E2) Aluminum
Double x (E;) Aluminum (E2) Aluminum
Channel

representing a least squares fit for N, « Was obtained for the 118 data points

for which the equation is
Mg = 0.001+ 1,057, (53)

The regression line indicates that the damping accountable from sources other
than the viscoelastic shear-damping mechanism is equivalent to an effective
structure loss factor of 0, 001; also, the structure loss factor is predicted
five per cent too low on the average, However, these numbers are both quite
small and it is felt that what is more significant is that the equation for this
line is approximately Mg = Ty which supports the theory.
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A statistical analysis was made of the 118 values of the loss factor
ratio 'r)e/nt . The accepted statistical mean for variables which are ratios
is the geometrical mean [Ref, 17]. The geometric mean of ne/nt for all
the experiments is 1,006, indicating excellent agreement between theory
and experiment, The statistical distribution of the ratio 'ne/nt is naturally
skewed, since about half of the values fall between zero and one, and the other
half between one and infinity, Therefore, it is reasonable to determine the
statistical distribution of the logarithm of the ratio 77e/17t . This is in agree-
ment with using the geometric mean since the logarithm of the geometric mean

is the arithmetic mean of the logarithms of the values being analyzed,

The standardized probability density of 1n(ne/nt) is shown compared
to that of a normal distribution in Figure 4. 12, where the standardized value
of ln(ne/‘r)t) is given by the ratio of the difference between the value of
ln(ne/nt) and the mean value to the standard deviation (root-mean-square) of
the ln(r,e/nt) values, It is approximately a normal distribution, which would
be an expected result if the distribution is caused by many factors, none of
which represents a predominant influence. The previous discussion of
sources of errors suggests that this is the case for the problem related to

the prediction and measurement of structure loss factor.

The standard deviation of 1n(ne/nt) is + 0.28. Therefore, using the
mean value 77e/7)t ~ 1,0 and assuming a normal distribution, it can be
expected that 68 per cent of the values of 'r]e/‘r;t will be between 0,76 and
1.32 and 95 per cent will be between 0,57 and 1.75, This value of the
standard deviation, while somewhat high, seems reasonable considering
the previous discussion on errors. As an alternate statistical measure, the
per cent error relative to " defined by 100(17e—7;t)/'r)t indicates that
68 per cent of the experiments will have an error between +32 per cent and
-24.5 per cent., Based on the results of the statistical analysis of the
experimental data compared to the theoretical predictions, it is concluded
that the existing theory and design procedures for calculating the loss factor
of two-elastic-element viscoelastic shear-damped structural composites is

satisfactory within accepted engineering accuracy,
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CONCLU.SIONS

The research investigation has resulted in (1) the generation of
extensive design data for the geometrical properties of viscoelastic shear-
damped structural composites, (2) the development of manual and automated
design procedures for predicting the loss factor of two-elastic-element
viscoelastic shear-damped structural composites, and (3) the performance
of laboratory experiments which have confirmed the adequacy of the existing

theory and design procedures developed, Specific conclusions drawn are:

(1) The "geometrical parameter" determined solely by cross-section
geometry and the modulii of the elastic elements comprising the structural
composite is a fundamental design parameter which plays a significant role
in the performance of all structural composite designs incorporating

viscoelastic shear-damping mechanisms,

(2) With regard to predicting the structure loss factor, the assumption
that the effective flexural rigidity is the real part of the complex flexural

rigidity has been confirmed,

(3) Based on a statistical analysis of the experimentally determined
values of structure loss factor, the existing theory and design procedures
for calculating the loss factor of two-elastic-element viscoelastic shear-
damped structural composites is satisfactory within accepted engineering

accuracy,

It is anticipated that the results of the research investigation will prove
useful to structural design engineers, especially those concerned with control-

ling the vibration response of air-borne and aerospace structural assemblies,

Recommendations for additional research work on structural composites

with shear-damping mechanisms include:

(1) Theoretical analysis and experimental verification of structure
loss factor for three-elastic-element viscoelastic shear-damped structural

composites,

66



(2) Evaluation of the accuracy of various methods for predicting the
effect of damping on the structural resonant frequencies,

(3) Development of applicable equations and design graphs for the
structure loss factor and resonant frequency of structural composites with
viscous shear-damping mechanisms,

(4) Application of shear-damping structural design techniques to
realistic structural members (prediction and experimental verification) beginning
with relatively simple constructions, such as frames and chassis, and
concluding with more complex assemblies such as scale models of spacecraft

structures,
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Figure 2.1 Cross-sections of viscoelastic shear-damped plates
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(symmetrical) and (d) three sheets (unsymmetrical)
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Cross-sections of viscoelastic shear-damped plates
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sheets:
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(@) two sneets, (b) N identical sheets, (c) three sheets
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Figure 2.4 Cross-sections of viscoelastic shear-damped double-
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Figure 2.5 Cross~sections of viscoelastic shear-damped structural
bar designs.

74



(b)

(a)

(e)

)

(d

Figure 2.6 Cross-sections of viscoelastic shear-damped structural
tube designs
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Relationship between the modulus ratio E,/Es. and thick-
ness ratio H;/Hs to provide the indicated maximum value
of geometrical parameter (Yo),ax for viscoelastic shear-
dimped plates consisting of two and three solid structural
sheets
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Figure 2. 14

Design equations and geometrical parameter of viscoelastic
shear-damped plates consisting of double-constrained box-
beam and I-beam constructions
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Geometrical parameter of composite structural tube having
‘a round cross-section shape for a dimension ratio Ha/A = 0. 05
and number of tube segments N ranging from three to infinity
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SP1

£ B G/t £ /fo £ X Xop x/xop WNax | Max n

10 | 1.4 4,65 2,03 | 4.93 | 3.08 0.27 11.4 0.28 0.385 | 0.108

20 | 1.4 3.4 2,00 |10.0 | 2,22 0.27 8.22 0.35 0.385 | 0.135

30 | 1.4 2.8 1.95 |15.4 | 1.785 | 0.27 6.62 0.42 0.385 | 0.162

50 | 1.4 2.2 1.91 |26.2 | 1,37 0,27 5.07 0.5 0.385 | 0.193

70 | 1.4 1.86 1.86 |37.7 1.13 0.27 4,18 0.575 | 0.385 | 0.221
100 | 1.4 1.6 1.84 |54.4 | 0.965 | 0,27 3.57 0.64 0.385 | 0.246
200 | 1.4 1.2 1.73 | 116 | 0.678 | 0.27 2,51 0.8 0,385 | 0.308
300 | 1.4 1.0 1.65 | 182 | 0.54 0.27 2.0 0.88 0.385 | 0.339
500 | 1.4 0.78 1.56 | 321 | 0.398 | 0.27 1.47 0.97 0.385 | 0.374
700 | 1.4 0.671 1.48 | 473 | 0.324 [ 0.27 1.2 0.99 0.385 | 0.381
1000 | 1.4 0.565 1.4 715 | 0.259 | 0.27 0.96 1.0 0.385

0,385

Figure 4.3 Manual design procedure calculations for the design example where each
discrete frequency f represents a potential resonant frequency fr of the
structural composite beam




L]

'
L

m

Hif

el TRY
=t 3

E5==

1000

(ZH)

% ‘AON3IND3¥4 LNVNOS3IY

[a)

100 1000

UNCOUPLED NATURAL FREQUENCY, f,(H2)

0

()

1000

00

FREQUENCY (Hz)

o

L

ol

HOLOvd SSOT 3MNLINYLS

o

)

b

(

Theoretical prediction of (a) resonant frequency and
(b) structure loss factor for the design example

4

Figure 4

146



2
STRING d

SUSPENSION\

ELECTRODYNAMIC
EXCITER

Erig

CATHODE

POLLOWER [—w{ HIGH-PASS FILTER

AMPLIFIER ]
ACCELEROMETER

TEST SPECIMEN

COUNTERX

WEIGHT

| —

] POWER » DECAY RATE
AMPLIFIER METER
OSCILLOSCOPE
HARMONIGC
OSCILLATOR

Figure 4.5 Experimental system for measuring the loss factor of viscoelastic
shear-damped composite structural beam specimens

147



E,;=10.3 X 108 psi
E>=10.3X10° psi

H,=0.0310 in

H2=0.0875 in

Hy=0.0051in(3M No.466 Tape)
B=3in

L =30in (Free-Free Beam)

LOSS FACTOR, 7

11t
-
i
|
T

0Ol EI A e
0 100 1000

FREQUENCY (Hz)

Figure 4.6(2) Theoretically predicted and experimentally determined
values of structure loss factor for a viscoelastic
shear-damped beam comprised of two solid aluminum
sheets for which the geometrical parameter Y= 1.62
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Figure 4.6(B) Theoretically predicted and experimentally determined
values of structure loss factor for a viscoelastic
shear-damped beam comprised of two solid aluminum
sheets for which the geometrical parameter Y= 2.26
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Figure 4.6(C) Theoretically predicted and experimentally determined
values of structure loss factor for a viscoelastic
shear-damped beam comprised of two solid aluminum
sheets for which the geometrical parameter Y= 3.55
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Theoretically predicted and experimentally determined
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Figure 4.6(E) Theoretically predicted and experimentally determined
values of structure loss factor for a viscoelastic
shear-damped beam comprised of two solid aluminum
sheets for which the geometrical parameter Y= 2,83
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Theoretically predicted and experimentally determined
values of structure loss factor for a viscoelastic
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sheets for which the geometrical parameter Y = 4.00
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Figure 4.6(G) Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of one steel and one aluminum solid sheet for which
the geometrical parameter Y= 2.69
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Theoretically predicted and experimentally determined values
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Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of one solid and one honeycomb aluminum sheet
for which the geometrical parameter Y= 0.68
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Figure 4.7(D) Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of one solid and one honeycomb aluminum sheet
for which the geometrical parameter Y= 0.32
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FREQUENCY (H2)

Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of one solid and one honeycomb aluminum sheet
for which the geometrical parameter Y= 0.48
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Figure 4.7(F) Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of one solid and one honeycomb aluminum sheet
for which the geometrical parameter Y = 0.84
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FREQUENCY (H2)

Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of one solid steel and one aluminum honeycomb
sheet for which the geometrical parameter Y= 0.45
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Figure 4.7(H) Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of one solid fibre-glass and one aluminum honeycomb
sheet for which the geometrical parameter Y= 0,27
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Figure 4.8(a) Theoretically predicted and experimentally determined values

of structure loss factor for a viscoelastic shear-damped beam
comprised of two aluminum honeycomb sheets for which the

geometrical parameter Y= 1,14
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Theoretically predicted and experimentally determined values
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169



O
T i FEE 0
. = S R e O
Q i H ==
(=% i iy ==
o —_ S
[ € == ._”* 3 =1
o - 1 PR i
% P = speidd ESSEE
< m M H E3i =]
o ® = ERE=S
—— Z o E
w 0 = u = i §
[« =N 2] ]
~— Q
WY cccec c T
cooS<=2 £t c m 3
" TowoonN~ O _
x x w % w “Ivu % c Cc lA.— m ___ I I
mMMOmMOmMO T T e 5 2 i
esdsosony it i
nou " =
SRV B ST xr x
WwwIXTIITIITomJd O w bt . Q
» W a Y P £ & e O
o T x T B e i N e
- HA T = u HipsIEnscaEs i N =
T &0 . HEsiE eSS TN
T = t I : - 5=
1 : I H T ; : RISHEE : 5
+ e e Ll e N e e
o e i LT =
B g EE=s ﬁ; 1 H I
@ - fiE E:
’ b
H ] , i ,
4 i
\
1L
woo s
.4 Lnililyl]i] 1 - m
o ) o
o
&
4OLJvd SSOT

FREQUENCY (Hz2)

Figure 4.8(C) Theoretically predicted and experimentally determined values

of structure loss factor for a viscoelastic shear-damped beam
comprised of two aluminum honeycomb sheets for which the

geometrical parameter Y= 1,05
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Figure 4.9(a) Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of a solid aluminum sheet and an aluminum channel
section for which the geometrical parameter Y= 0.26
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Figure 4.9(B) Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of a solid aluminum sheet and an aluminum channel
section for which the geometrical parameter Y = 0.47
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Figure 4.9(C) Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of a solid steel sheet and an aluminum channel
section for which the geometrical parameter Y = 0,49
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Theoretically predicted and experimentally determined values
of structure loss factor for a viscoelastic shear-damped beam
comprised of two back-to-back aluminum channel sections
for which the geometrical parameter Y= 0,76
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